Tải bản đầy đủ (.doc) (12 trang)

Kinh nghiệm bồi dưỡng học sinh yếu kém giải toán đố trong chương

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (132.09 KB, 12 trang )

Kinh nghiệm bồi dưỡng học sinh yếu kém giải toán đố
trong chương trình Toán lớp 3.
I. Lý do chọn đề tài
Vì dậy học nhiều năm lớp 3 nên tôi nhận thấy : Trên thực tế của từng lớp,
từng trường nói riêng, các trường nói chung đều có một số em giỏi toán và một
số em kém toán. Những em giỏi thì say mê học tập. Những em yếu kém thì lười
học, sợ học và chán học.
Do yêu cầu phổ cập giáo dục cấp Tiểu học. Để đảm bảo chất lượng học
tập của các em trong một lớp, một khối phải đồng đều như nhau. Các trường
cũng phải bằng nhau.
Nên tôi đã chọn đề tài : "Bồi dưỡng học sinh yếu kém giải toán chương
lớp 3" để giúp các em yếu kém học tập tốt hơn bộ môn toán trong đó có giải toán
đúng ở chương trình này.
II. Cơ sở khoa học và thực tiễn
Chương trình tiểu học là chương trình đồng bộ được mở rộng và khắc sâu
kiến thức môn toán nói chung và phương pháp giải toán nói riêng.
Chương trình toán lớp 3 là chương trình chuyển tiếp giữa lớp 1, 2 và lớp 3, 4.
Học sinh được củng cố mở rộng phép cộng trừ và làm phép nhân chia. Đồng thời
rèn luyện kỹ năng tính toán cho học sinh : 4 phép tính + - x : trong phạm vi
1000; và các dạng giải toán điển hình. Vì vậy đối với việc giải toán trong từng
tiết học để học sinh yếu kém giải toán đúng quả là khó khăn cả về trả lời lẫn tính
toán.
Nhưng trên thực tế đối với học sinh yếu kém giải toán, các em rất ngại làm
bài, sợ giải toán vì khả năng tư duy "phân tích, tổng hợp của các em có nhiều hạn
chế".
1
Với thực tế học sinh lớp tôi, trường tôi còn có một số em giải toán có lời
văn thiếu chính xác, chưa đúng, tính toán còn sai, nhiều khi làm bài chưa có kỹ
năng phán đoán, suy luận, không biết làm thế nào ? Các em rất sợ học. Mà môn
toán là môn "Thể thao trí tuệ" vừa giúp các em giải trí tinh thần, vừa giúp việc
dạy tốt môn toán là điều cần thiết mà giáo viên cần quan tâm, trong đó "cách giải


toán" là chú trọng trong chương trình toán 3.
III. nội dung và phương pháp
1. Điều tra phân loại học sinh yếu kém toán ở lớp
Nhất là những em yếu kém về giải toán, ngay từ đầu năm khi nhận lớp tôi
phải phân loại từng em, yếu kém loại toán điển hình nào để tôi có kế hoạch kèm
cặp, hướng dẫn phương pháp giải toán kịp thời cho từng em.
Lớp tôi có em Duy, Cương, Sơn, Tuấn, Thư, Hiệp, Hưng ... là những em
giải toán còn yếu. Các em thường sợ làm loại toán này. Các em không biết giải,
hay trả lời sai, làm tính không đúng. Tôi luôn quan tâm động viên các em chăm
học, tích cực làm bài để các em tự tin vào khả năng của mình để suy nghĩ, phán
đoán tìm cách giải đúng.
Trong các giờ lên lớp tôi luôn động viện cho các em suy nghĩ tìm ra cách
giải. Tôi thường xuyên kiểm tra bài làm của em trên lớp, chấm chữa tay đôi với
học sinh để củng cố kiến thức. Tuyên dương khen thưởng kịp thời bằng điểm số
nếu các em có cố gắng (mặc dù chưa đạt yêu cầu) để các em phấn khởi học tập
xoá đi ấn tượng sợ giải toán.
Về nhà : Tôi yêu cầu các em làm lại bài toán vừa giải ở lớp để các em yếu
kém nắm vững cách giải. Lần sau gặp loại bài như thế là làm được ngay. Tôi còn
yêu cầu phụ huynh kết hợp chặt chẽ với giáo viên, có trách nhiệm hướng dẫn con
học ở nhà giúp các em làm đầy đủ bài tập cô giao. Ngoài ra tôi còn giao cho
những em giỏi toán ở lớp mỗi em giỏi giúp một em kém. Lập thành đôi bạn cùng
tiến bằng cách : Giờ truy bài kiểm tra bài làm của bạn. Nếu bạn giải sai thì
2
hướng dẫn giải lại cho bạn nắm được phương pháp giải toán. Khi giao bài về nhà
không nên giao nhiều, chỉ cần giao 1 đến 2 bài cho học sinh làm thôi, tôi lồng
thêm những bài toán vui gắn với thực tế giúp các em hứng thú học toán hơn.
2. Rèn kỹ năng từ dễ đến khó, từ kiến thức cũ đến kiến thức mới
a) ở lớp một: Các em đã học các bài toán đơn giản : giải bẳng 1 phép tính
về thêm bớt nhiều hơn 1 số đơn vị.
Loại toán này đơn giản. Nhưng cũng phải củng cố cho các em nắm vững thì mới

làm được các bài toán ở lớp trên.
Ví dụ:
- Bắc gấp được 4 cái thuyền, Nam gấp được nhiều hơn Bắc 2 cái. Hỏi
Nam gấp được mấy cái thuyền ?
- Hà làm được 4 bài toán, Lan làm được 6 bài toán. Hỏi ai làm được nhiều
hơn và nhiều hơn bao nhiêu bài toán ?
Đây là các bài toán có dữ kiện cụ thể. Các em cần suy nghĩ làm tính cộng
hay tính trừ là đúng và chú ý dựa vào câu hỏi mà trả lời cho đúng.
b) ở lớp hai : Các em được ôn lại các dạng toán lớp 1 và luyện thêm 5 mẫu
giải toán dạng : a + b + c ; a + b - c ; a + (a - b) ; a + (a + b)
Đây là dạng toán tổng hợp giải bằng 2 phép tính. Tôi cho các em yếu toán,
trung bình ôn luyện các dạng toán này với các số trong phạm vi 100, giúp các em
hiểu mối quan hệ giữa các đối tượng với các dữ kiện đơn giản của bài toán. Từ
đó hình thành tư duy toán cho học sinh, giúp các em phân tích, tổng hợp, giải
được các dạng toán nhanh, chính xác. Bước đầu có kỹ năng trình bày bài toán.
c) Hình thức rèn luyện : Học sinh nhận xét dữ kiện, tóm tắt đề toán, tìm ra
cách giải với cách làm này học sinh mạnh dạn, tự tin vào bản thân, dần dần ham
thích giải toán, để thể hiện khả năng chính mình.
Vai trò của người thầy rất quan trọng. Lời phát biểu của các em dù đúng
hay sai, giáo viên cũng phải có lời động viên hợp lý. Nếu học sinh phát biểu sai,
3
hoặc chưa đúng, giáo viên động viên "gần đúng rồi, con cần suy nghĩ thêm nữa,
thì sẽ đúng hơn ..." giúp các em cố gắng suy nghĩ làm bằng được, chứ không nên
nói "sai rồi, không đúng ..." làm mất hứng của học sinh, ức chế học sinh tự ti,
chán học.
Bước này là bước quan trọng giúp học sinh không sợ giải toán, thích thi
nhau làm để khẳng định mình, từ đó có kỹ năng giải toán vững chắc với lời giải
thông thường ở lớp 1, 2.
3. Định hướng cho học sinh giải được các bài toán có dữ kiện cụ thể
sang giải các dạng toán điển hình của lớp 3

- Gấp 1 số lên nhiều lần
- Giảm 1 số đi nhiều lần
- Tìm 1 phần mấy của một số
Giải toán tổng hợp bằng 2 phép nhân chia có liên quan rút về đơn vị.
Giải bài toán tổng hợp bằng 2 phép chia có liên quan đến rút về đơn vị ...
Ví dụ: Thuý có 10 nhãn vở, Lan có 20 nhãn vở. Hỏi hai bạn có bao nhiêu
nhãn vở ? Bạn nào nhiều hơn và nhiều hơn bao nhiêu nhãn vở ? Lan có số nhãn
vở gấp mấy lần Thuý ?
Đối với bài này có nhiều câu hỏi khác nhau, giáo viên phải hướng dẫn học
sinh giải tương ứng với yêu cầu của từng câu hỏi.
Giải
Hai bạn có số nhãn vở là :
10 + 20 = 30 (nhãn vở)
Đáp số : 30 nhãn vở
Số nhãn vở Lan nhiều hơn Thuý :
20 - 10 = 10 (nhãn vở)
Đáp số : 10 nhãn vở
Số lần Lan gấp Thuý là :
4
20 : 10 = 2 (lần)
Đáp số : 2 lần
Giáo viên phải nhấn mạnh cho học sinh một lời giải 1 phép tính. Có bao
nhiêu câu hỏi có bấy nhiêu đáp số (chú ý cả tên đơn vị).
Với các yêu cầu giải toán thông thường :
- Nhiều hơn : làm tính cộng
- ít hơn : làm tính trừ
- Gấp 1 số lần : làm tính nhân
- Kém 1 số lần : làm tính chia
Sau khi rèn kuyện 1 số bài toán điển hình để phát triển tư duy học sinh.
Tôi nâng cao hơn 1 bước bằng cách thông qua bài toán "gốc" có dạng trên tôi

cho học sinh nâng cao tư duy lên 1 bước với những dữ kiện trên mà cách giải lại
làm tính ngược lại với phép tính trên (vì người ta cho số bé yêu cầu tìm số lớn)
- Có từ ít hơn : làm tính cộng
- Có từ nhiều hơn: làm tính trừ
- Có từ gấp : làm tính chia
- Có từ kém : làm tính nhân
Ví dụ: Tùng có 12 hòn bi, Tùng có nhiều hơn Hùng 2 hòn bi. Hỏi 2 bạn có
bao nhiêu hòn bi ?
Giải
Số bi của Hùng có là :
12 - 2 = 10 (hòn bi)
Số bi của 2 bạn đó là :
12 + 10 = 22 (hòn bi)
Đáp số : 12 hòn bi
Ví dụ: Thuỷ có 30 qua tính. Thuỷ có gấp 3 lần Hà. Hỏi 2 bạn có bao nhiêu
que tính ?
5

×