Tải bản đầy đủ (.pdf) (36 trang)

Bài tập xác suất thống kê bản đọc (sách thầy tô văn ban)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (30.81 MB, 36 trang )

Nhu vfy, qua kh6u lya chgn biiSn ta dgOc

(*)

Y = -0,304+0,083x1 -0,031x3 +0,004x] +e.

Chuong

3

2:

G

BA lraP

1

0

-1

'

-2

$6.1.8Ar TAP CHTI0NG r
Hinh 5.9. PhAn du chuin ho6 theo quan sat c0a s6 tieu

dQ tan


Ki6m tra phan du cta m6 hinh ndy: Ching h4n, theo chi s5 i ta th6y c6
2 gi|triphAn du chu6n ho6 (tmg vdi quan s6t thri 6 vi thrl l0) vuqt qu6 2; vi
ph4m thir hai ld d; khA nhd t4i c6c quan s6t ll *24. Dir sao hai vi ph4m niy

!
(*)
ldm m6 hinh cu5i cirng.
c6 vi ph4m tl6ng kC. Ta lga chqn
cirng kh6ng a6n ndi nio. Pfr6n du chuAn ho6 x6p theo x1, x2 hay

ddu kh6ng

#

l.l.

The lifetime of a pC is defined

the tirne

it

as

takes for the pC to

break down.

a) Define a random experiment that
involves the lifetime ofthe pC.

b) What is the sample space?
c) Define two events that are disjoint.

d) Define two

events that have a
nonempty intersection.

1.1. Tu6i thg cria mQt chi6c pC

tfnh tir hic n6

bit

tlu-o.c

ttAu ho4t riQng

ttrin khi h6ng.

a) Xdc dinh ttri nghigm ngiu ntridn
gin v6i tu6ithg cria pC.
b) Kh6ng gian miu 6 d6y td gi?
c) X6c ttlnh 2 bi6n c6 xung khfc.
d) X6c tlinh 2 birin c6 c6 giao khric
trting.

D&

b)S = IR* = (0;


-);

c) (0;1000) vi (>2000);
d) (0;1000) and (900;2000).

1.2*. Customers access an Automated 1.2*. Circ khrich
hing lui t6i mqt chiiic
Teller Machine (ATM). They want
m6y rrit tidn tu rlQng. Hq muiin rrit
to withdraw random amounts of
mQt lugng ti6n ngSu nhi6n 50 ngdn
money in multiples of 50 thousand.
tl6ng mQt. Hiiy chi 16 kh6ng gian
VND. Specify the sample space. Is
m6u. Edy phrii chnng ld kh6ng
it the discrete one? Specift three
gian mdu roi r4c? Chi ra 3 bi6n ci5
events of interest.

quan

tim.

D,S. S = {50,1 00,...,1 04} ;
Dfrng; (<

t03), (t03; 5.103),

15.103+t04).


232

233


L3**. xdt thi nghiQm ngiu nhi6n tung
con xirc xic don I litr vi di5m s6
diu ch6m hi€n tr6n mdt. Gie sfr
courrting the number of dots facing
P({6})=0,3 vd t6t ci c6c m[t
tup. Assume that P({6})=0.3 and

1.3**. Consider the random experiment
of tossing a single die once and

all

other faces are equiprobable.

kh6c
,-

,.A

A

suat cua cac Dlen co

A={2,4,6}, B={1,5},

6 = {1. 2. 3, 4} ancl D= Au(BnC)

A= ?) 4,6\., a = {1, s} ,

g = {1, 2,3, 4},. D = A

Let P(A; = 0.9; P(B) = 0.8 . Show
that P(A n e) > o.z .

1.5*. Given that P(A) = 0.9:

a)
b)

0,58; 0,28; 0,56vd0,72.

P(A):0,9; P(B):0,8. Chitng
t6r[ng e(anB)>0,7.

1.5*. Gia

st

n(nn

P(A) = 0,9;

P(B):0,8;

B) = 0,75, tim


DS; a) 0,95; b) 0,15; c) 0,05:
1.6. Prove the Boole's inequality

\

i=t

1.7**. Consider tlre switching network.

It is equally likely that a switch
will or will not work. Find the

all

alternatives are possible;

khi ndng d6u c6 thii

h) B-E (Bose-Einstein) the

b) B-E (Bose-Einstein)

particles carrnot be distinguished,
all alternatives are possible;

thr3 phAn biQt

c) F-D (Ferrni-Dirac) - the particles
cannot be distinguished, at most


c) F-D (Fermi-Dirac)

one particle is allowed in a box.

chrla nhi6u

c6c

prob. that a closed path will exist
between terminals A and B.

-

kh6ng

phdn biQt

-

kh6ng th6

c c6c hgt, mQt hQp
ntr6t t tr4t.

duo.

n! n!(m-l)!
a) "' : b)


.

,n,-,

(m+n_l)1,

n!(m

n)!

-

.

1.9*. MOt thf nghiQm ngiu nhi€n c6
space S={a,b,c}. Suppose that
kh6ng gian miu S={a,b,c}. Gi6
P{a,c} = 0.75 and P{b,c}=0.6.
srlr P{a,c} =0,'15, P{b,c}=0,6.

1.9*. A random experiment has sample

Find the probabilities

of

the

elementary events.


1.7**. Xdt mOt mach tliQn nhu hinh v€.
Cdc c6ng tic it6ng hoic md v6i

Tim xic suSt cria c6c bitin cti so
cap.

oS. e(a) = O,+; P(b) =0,25;
P(c) = 9,35'

l.l0**. lf m

students born on

independent days in
adterrding a lecture.

D& 0,688.

'

lg93 are
Find the

probabilitiy that at least two of
them slrare a birthday arid show
that

p>l
,2


*n"nm=23.

ft0**.

Gi6 sri c6 m sinh vi€n sinh nrm
t993 ttang tham dU gio giAng. Tim

x6c su6t

itnhit2

sinh vi6n cirng c6

ngiy sinh vd chftng t6 ring

p

>1

khi m=23.
ESi

234

duo.'c;

ttucr. c cric het, t6t cd
khi ndng ddu c6 thiS dugc;

--]-l'm!


'[!^,)=r(o,)
khi nlng nhu nhau. Tim x6c su6t
el6 c6 it ra mQt dudng d5n gita 2
diu n5i A vi B.

tru6c (m5i hpt chi d trong
c6c trudng hgp sau:

a) M-B (Maxwell-Boltzmann) c6c hat coi ld kh6c nhau, t6t ci cdc

(Maxwell-Boltzmann)

g)

1.6. Chring minh b6t tling thric Boole

i

h4t

a) M-B

DS.

n

Ue, l=I(n,)

\i=r )


hQp chqn

cl e(nne).

c) P(AnB).

ta d4t ng6u nhi6n n

(ph6n t&) viro m > n hQp. Tirn x6c
su6t p cl€ c6c h4t du-o. c tim th6y d n

I h$p). X6t

r(nuB);
b) r(e - n);

P(A-B);

Pl

each

al

P(AuB):

(n

in


1.8. Chtng

box). Consider the following cases:

the particles are distinct,

u(Bn.C).

1.4. Cho

0.8: P(A n B) = 0.75, find

P(B) =

rS;

preselected boxes (one

ddng khn ndng. Tim x6c

Find the probability of the events

.
1.4.

li

1.8. We place at random n particles in
m > n boxes. Find the probability p

that the particles will be found in n

l-

36s!
(365

-

m-)!365*

235


l.l1**. A train

and a bus arrive at the
station at random between 9 A.M.
and l0 A.M. The train stops for l0
rninutes and the bus for a minutes.

,1.._

1.ll**. Tiu ho6 vd xe bus tdi ga t4i m6t
thoi di,3m ngSu nhi6n tir 9 tl6n l0
gid. Tdu dirng trong l0 phrit cdn xe
bus dirng a phrit. Tim a tl6 xric su6t
xe kh6ch vi tdu ho6 g{p nhau
bing 0,5.


l.ind a so that the probability that

the bus and the train will

meet

\
'r
1.17**. Consider the experiment of 1.17**. Xet thi nghiQm tung 2 con xirc
throwing the two fair dice. You are
xic c6n aOi. Si6t ring tting c6c n5t
then informed that the sum is
l6n hon 3.
greaterthan 3.
a) Tim x6c su6t biiin c6 2 mdt
gi6ng nhau khi kh6ng biiit th6ng
a) Find the probability of the event

equals 0.5.

D.s.
1.12. A fair die is rolled two tirnes. Firrd

oS:

We have two coins; the first

l.

is


1.13*. C6 2 tt6ng tiBn, mQt cdn d6i, mQt

c6 2 mf;t s6p. Rtit ngiu nhi6n I
d6ng tidn, tung n6 2 lin vd d6u
hign m4t s6p. Tim xdc su6t ddng

it nvice and heads shows
both times. Find the probability

vv€ toSS

that the coin picked is fair.

tirSn

rtt

PS:

l.

b) Find the probability of the same

v6i th6ng tin dl cho.

duo.

manufacturing plants
produce sirnilar parts. Plant I

produces 1000 parts, 100 of which
are defective. Plant 2 produces
2000 parts, 150 of which are
defective. A part is selected at
random and found to be defective.

c ld ddng ti6n cdn d6i.

5

plant

that n(nln) defined by 1.I4. Chring t6 ring e(ele) theo
Eq. (1.2.1) satisfies the three
(1.2.1) thod mdn 3 ti€n d6 cta xdc

lwo

b) Tim x6c su6t cfra bii5n c6 tr€n

ps,

1,1.
6'33

\

xu6t.

I?


D& 0,4.

1.14. Show

axioms of a probability, that is:

dE n6u.

1.18**. Hai nhi m6y s6n xudt nhirng
linh kiQn giting nhau. Nhd m6y I
sin xu6t 1000 linh kiQn, trong d6
c6 100 li h6ng. Nhd m6y 2 san
xu6t 2ooo linh ki€n, trong d6 c6
150 la h6ng. Chgn ng5u nhi6n I
' linh kiQn vi th6y ring n6 bi h6ng.
Tim x6c suSt n6 do nhi m6y I sin
What is the prob. that it came from

1.18*".

6

two-headed.

We pick one of the coins at random,

tin

event with tlre information given.


xic cdn A5i Z tin.
Tim x6c sudt aii t6ng s5 n6t bing 7.

is 7.

fair and the second

phirt.

1.12. Tung con xric

the probability that the sum of dots

l.l3*.

60-J100

that two faces are the same without
the information given.

.V

1.19**.

su6t, d6 ld:

A lot of

100 semiconductor chips


contains 20 that are defective. Two

1.19**. L6 hdng 100 chip bdn din c6
chira 20 clrip b! h6ng. Chgn ngiu

ay

n(nle)>o;

ay

e(nln)>o;

clrip.s are selected at random,

uy

e(sla)=

uy

n(sle)= r ;

replacement, frorn the lot.

a) X5c su6t chitic thri nhSt b! h6ng

a) phat is the probability that the


li

first one,selected is defective?

b) X6c su5t chii5c thti 2 b! h6ng li
bao nhi6u, bii5t ring chii5c thfr nh6t
bi h6ng?

r

;

c) n(n,t.lA2lB)=

c; P(A,r-,rerln)=

r(e, ls)+ r(e,In)
if

A'1n Az=A

1.15*. Show that

if

P(AlB)>P(A)
then

P(BlA)>P(B).


if
P(A), P(B)
rhen e(ele)> r(sle).

1.16. Show that

e(n,la)+ n(nrle)
;r,

niSu A1

b) What is the probability that the

r\A2=A.

1.15*. Chirng minh ring

second one selected
niSu

e(ele)>n(e)
thi P(B|A)>P(B).
ring n6u
P(A) > P(B)

1.16. Chung minh

thi P(AIB)> e(nla).

nhi6n 2 chi6c kh6ng


without

'

is

defective

bao nhi6u?

giverr that the lth on" was defective?

c) X6c suSt d6

c) What is the probability that both

bao nhi6u?

are defective?

l{p lai.

ci

2 chiiSc bi h6ng ld

D,S: a) 0,2; b) 0,192; c) 0,0384.
v--


I contains 1000 bulbs of 1.20**. HQp I g6m 1000 b6ng ddn,
trong d6 lO% bi hdng. H$p 2 g6m
which l0 percent are defective.
2000 b6ng, trong d6 5% bi h6ng.
Box 2 contains 2000 bulbs of

1.20*,'. Box


which 5 percent are defective. Two
bulbs are picked from a randomly

'.

du-o.

duo.

c rirt ra t& mQt h6p

c chgn ng6u nhi6n.

selected box.

a) Tim x6c su6t

a) Find the probability both bulbs

h6ng.


are defective.

b) Gie st} ring cd 2 b6ng ddu bi
h6ng, tim *6c su6t d,6 chirng ttu-oc

b) Assuming that both are defective,
find the probability that they came
fi'om box

l:

1.21**. SLrppose that laboratory test to
detect a certain disease has the

:

,

n(nla)

B*

B

= o,ee;

n(n[)

{krit qui ki6m tra duorg tinh}
%o


ddn si5 bi bQnh niy.

bi6t rang kiSt

is the probability that a

bQnh,

qui ki6m tra li duong

7, respectively. Catch one mouse
frorn the first cage and one mouqe
from the second cage then 6rass
them to the third cage. Finally
catch one mouse from the third
cage. Find the probability that this
mouse is male.

238

binary

communication channel. The
channel input symbol X may
:rssume the state 0 or the state l.
Because of the channel noise, an

1.23*. Xet k€nh th6ng tin nh! ph6n. DAu
viro X cfia k6nh


trang th6i

du-o.

c xem nhu 6 2

0 ho4c l. Do c6 nhi6u
diu ra 0 c6 thii ring

k6nh truydn,

and vice versa.

v6i dAu viro I vi ngucr.c l4i. K€nh
dugc tl{c truorg bdi x6c su6t
truydn k€nh po,Qo,pr, Ql, x6c

The channel is characterized by the

tlinh theo

channel transition probability
Po,Qo,Pl, and ql, definedbY

o, = R(vrl*o),p' =n(volxr),

irrput 0 may convert to an output I

oo =


oo

e(lr l*o),

p, = R(volxr),

=e(volxs), andql =R(vrlxr),

here xs and x1 denote the events

=0)

and (X

= l),

respectively,

and y6 and y1 denote the events

qo = P(vo

lxo),q, = P(y, l*, )

trong d6 xs

vi

x1


kf

hiQu biiSn ci5

(X = 0) vi (X = l), tuong ring; yo
vi y1 kf hi€u bii5n c5 1v=0) vi
(Y = l) tuong ring. Chir f ring,

p0+q0=l:pr+ql.DAt
vi pt = 0,2.

(Y = 0) and (Y = l), respectively.

P(xo) = 0,5, po = 0,1

Note that po + qo = I = Pl * q1. Let
P(xo) 0.5, po 0.l, and pt = 0.2.

a)

a) Find P(ye) and P(y1).

(de) la tr4ng thrii cfia dAu vdo?

:

:

b)


If a 0 was observed at the

Tim P(ys) vn P01).

b) Ni5u thdy 0 d diu ra, xac suit tI6 0

c) NiSu th5y 1 d diu ra, x6c su6t d6

tinh.

output, what is the probability that

I (de) Ia tr4ng th6i cta tliu

D,S..0,165.

a 0 was the input state?

d) Tfnh x6c su6t sai

c) lf a I

DS. a) 0,55;0,45; b) 0,818;

ry

1,22**. We have two cages of 1.22t't'. C6 2 l6ng chuQt thi nghiQm,
experimental mice. In the first
I6ng thrl nh6t c6 l0 con chuQt dgc

there are l0 male and 15 female
ones; in the second there are 8 and

1.23*. Consider the

(X

= o,oo5

Tinh x6c su6t m6t ngudi bi

and 0.1 percent the population

person has the disease given that
the test restrlt is positive?

:

vit 0,1

= o.oo5

actually has the disease.

What

I.

vdi A = {ngudi kiiim tra c6 bQnh},


{event that the test result is
positive). It is known that

r(ale)

a) 0,0061 9; b) 0,80; c) 0,08

thu dugc kiSt qui sau ddy:

iras the disease)

= o.ee;

D$

1.21**. Gid st ring, bing x€t nghiQm tt6
phet hiQn mQt lo4i bQnh nguoi ta

leveni that the tested person

e(ela)

hai b6ng ttdu bi

b6ng h6ng.

fol lowin g statisiicq. Let

4


ci

rittirh$p 1;
c) GiA sri ring ci 2 b6ng ddu bi
h6ng, tim x6c suSt d6 chiiSc b6ng
tiiSp theo rfit ttr hQp tE chgn li

c) Than find the probability that
the next bulb picked from the
selected box will be defective.

'

Hai b6ng

vi

15 con chuQt c6i; l6ng thti

II c6

was observed at the

output. what is the probability that
a

I

d)


c) 0,889; d)

lim

vdo?

P.

.

0,1 5.

was the input state?

Calculate
error P..

the probability of

8 con chuQt tllrc vd 7 con chuQt cdi.

Bit I

con

tu l6ng I,

mQt con tir

II rdi dua sang ldng III; sau

d6 bit I con tir l6ng III. Tinh x6c
l6ng

su6t d.l con

niy

ld chugt
DS:0,467.

239


1.24**., The incidence of an illness in
the general population is q. A new
medical procedure has been shown

to be effective in the early
detection of tlre illness. The
probability that the test corlcctly
identifies someone without ihe
illness as negative is 0.95.

a) Find the

probability that
someone with the illness will get
positive result.


higu qui d6 ph6t hipn s6m benh
ndy. X6c su6t x6t nglriQm chi th!

if it functions when at least
of the components functions.
Assume that the components fail
independently and that the

ihing m6t nguoi khrSng bi bQnh c6

probability of failure of component

t.24**. Tf

lQ mic mQt losi bQnh cria
cQng d6ng ld q. Quy trinh mdi t6 ra

x6c sudt it6 h€ hoat dQng.

a) Tim x6c suAt phin ring duong
tinh c0a ngudi kh6ng c6

functions.

os

bQnh.

b) Bitit ring q=0,0001


vi

bao nhi€u?

c) Biiit ring q = 0,2 vi x6c sudt dd
mgt ngudi khi c6 k6t qui duong
tinh s€ bi b€nh ld 0,8. Tim x6c sudt
phin trng duong tinh cria ngudi c6

tlrat you have the illness?

c) Now it's known that q = Q.2
and someone with positive result
will be ill with probability 0.8.
Find the probability that someone

with the illness actually

1.28. Let S be the sample space of 1.28. Gia sri S li kh6ng gian m6u c6c
thi nghiQm vd S={A,B,C},
an experiment and S={A,B,C} ,

P(A)=p, P(B)=q, and P(C)=r,
where p,q,r>0. The experiment
is repeated infinitely, and it is

b€nh.

assumed


experiments are independent.

Find the probability that the event
A occurs at least once after the nth

c) 0,80; 0,92.

correct.

in order to establish

occurs before B.

1.25. Bao nhi€u phuong trinh ban cAn
a6 ttrii5t l$p tinh rtQc t6p cria 5 biiSn
c6z

D& 65.
1.26. Let g = [0;

l] x [0; t]. Assume that

P(A) is equal to the area of A. Find
t\Yo independent events

A, B that

rlo not have a rectangular form.

1.27**. A systcnr consisting ofseparah:

componcnts is said to be a parallel

240

1.26. Gia sfr S=[0; I] x [0;

l].

Cho rang

P(A) bing diQn tich A. Tim 2 biiin
lgp A, B mi kh6ng c6 d4ng

cO aQc

_o chB nhflt.

R(B)=e,

P(C)=r,

vdi p,q,rr9. Lap lai thf nghiQut
vd h4n lAn vi gii sri ring c6c thi
nghiQm thinh c6ng ln dQc lflp.

Tim x6c su6t tt€ bii5n cti A x6y ra it
nh6t I IAn sat thi nghiQm thri n r6i
sau d6 tim x6c su6t cira bi6n c6 A

xiy


experiment and than firrd the
probability of the event tlrat A

Find the probability that the test is

independence of 5 events?

P(A)=p,

successive

ES. a) 0,05; b) 0,165;

positive result.

' to check

that the

Tim x6c su6t xet nghigm tfiing.

has

1.25. How marry equations do you need

i=t

su6t xdt nghiQm chi th! tfiing mgt
ngudi b! bQnh c6 k6t qui duo:rg


the illness as positive is 0.99. You

test

the

prpbability that

It

l-flni.

xdc

take tlre test. and the result is
positive. What is the probability

the

thinh phin hoat tlQng. Gi6 sir c6c
thinh phin h6ng h6c m$t c6ch tlQc
lfp vi xic su6t h6ng cira thinh
phin thri' i ld p;, i=1,2,...,n.'fim

pi, i- 1,2....,n. Flnd the
probability that the system

correctly identifies someone with


and

n6u n6 ho4t tlQng khi

i is

k6t qud 6m tinh ld 0,95.

tinh ld P=0,99. B4n thgc hiQn
x6t nghiQm cho k6t quA duong
tfnh. Khe ndng b4n b! mic b€nh ln

b) It's given that's q =0.0001

it nh6t rnQt

system

one

D,si

ra tru6c bitin c6 B.
I

; P(A)/[P(A)+ n(e)].

n:

1.291'. Manufacturer sells 20000 1.29*. Nha sin xu6t b6n ra 20000 sin

products, 300 of which are
phAm, trong tt6 c6 300 phi5 phim.
defective. Distributor tests at
Nhi phin ptrOi t
,

random 100 produces, ifthere is at
rrost one fault, the products will be
accepted. Find the probability that

100 bO, n6u c6 kh6ng qu6 mQt b0
t6i ttri ctr6p nh6n 16 hing. Tinh x6c
su6t 16 hnng bi tir chi5i.

the batch ofgood is refused.

DS:0,443.

1.27*J'. MQt he th6ng c6c thdnh phin
ri6ng rE xem nhu mQt h€ song song

241


$6.2.8Ar rAP CHTIONG rr
2.1**. Two basketballers one by one 2.1**. Hai cdu thri lin luqt n6m b6ng
throw a ball into a basket until
vAo 16 cho d6n khi ndo b6ng tr0ng
there is one ball thrown into the

ri5 thi dirng n6m. Bi6t ring x6c su6t
basket. The probability of success
ndm trring cria m6i nguli tuong
in every throwing is 0.8 and 0.6 for
0ng li 0,8 vi 0,6 trong mdi tAn
,t

the fist anfthe second basketballer,

nem. Tim x6c su6t cia:

respectively. Find the probability
table of:

56lin
bi 56 lin

a) The number of throwing of the
first basketbaler;

D,S.

b) The number of throwing of both

b) P{Y = 2n

a)

basketbalers.


.

ndm cta cAu thri thri nh6t;
n6m cria c6 2 ciu

tht.

a) P{X = n} = 10,08)n-r. 0,92;

-

1} = 0, 08n-1. 0,8;

P{Y = 2n} = 0,08n-1. 0,12.
ages

2.2*.Mqlt nh6m tr6 gdm 4 em tu6ittr

from 0 to 3. Two children are chosen
at random then their ages are added

0

ngiu nhi6n hai em r6i
. :.
cQng hai tu6i cria chtng l4i v6i
nhau. Ggi X ln kiit qui. Tim ph6n
b6 x6c su6t cia X.
tti5n 3. Chgn


together. We call X the result. Find
the probability table of X.

2.3*. A personnel officer has a number 2.3*. Cin bQ phdng nhdn sg c6 mQt lo4t
of serious candidates'to fill four
ring vi6n tldng tlon vdo 4 ch6
positions. The chance for every
tilSng. Khi nlng thdnh c6ng cria
candidate is 0.6. Find the
m5i ung vi6n li 0,6. Tim xic suSt
probability that he has to consider
d,5 c6n b0 d6 phni xem x6t ding
7 persons correctly.

7 ngudi.

2.4**. An information source generates
symbols at random from

a fourletter alphabet {a, b, c, d} with

1, P(b)=i,
probabilities P(a)=
I
P(c)= P(d)=r.
A

D,S..0,166.

2.4**. Ngudn th6ng tin sinh ngiu nhi6n


cilc

kli

{a, b, c,

:

hi€u g6m

d} vdi

4

ch&

xric su6t P(")

II

P(b)=4, P(c)= P(d)=-.
coding

scheme encodes these symbols into
binary codes as follows:

a-0, b-10, c-110, d-lll
242


z_

of the code,
that is, the number of binary
denoting the length

/

2.2*. A group 4 children of the

Gqi X le BNN kf hiQu ttQ dii cria
m6, tt6 ln s5 4i hi€u nhi ph6n (s6

Let X be the RV (random variable)

lugc tl6 m6 mi ho6 c6c

thinh
a

-0,

kf

c1i

=;,

c6c x6c su6t R1X=l), P(X=2),
P(X =3) vi P(X >3).


of X?
Assuming that the generations of
symbols are independent, find the
prob. P(X = l), P(X =2),
P(X = 3) and P(X > 3).

D,s..

mE nhi

ll.

{t,z,sl; },

l,

l

o.

2.5*. Consider the experiment of
throwing a dart onto a circular

2.5*. Xdt thi nghiQm n6m phi ti6u vio

plate with unit radius. Let X be the

vi. Gqi X ln birin ngiu nhi€n chi


RV representing the distance of the
point where the dart lands from the
origin of the plate. Assume that the
dart always lands on the plate and

khoing c6ch tir tli6m phi ti6u cham

vio dia t0i tam cria dTa. Gii sri phi
ti6u lu6n roi vio dia vi ch4m vio

that the dart is equally likely to

nhau. Tim

land anywhere on the plate. Find

P(X < a), P(a
P(X

(a

mQt c6i tlTa hinh trdn b6n kinh tlsn

-.t cria tlia v6i.khi nlng nhu
mgi' tli6m



2.6*. a) Verif, that the function p(x)

DS: a2i b2

:a2

.

2.6*. a) Chung t6 rAng hAm p(x) x6c

defined by

ttinh bdi

x=o't'Z'"'

p(*)={;(;)- x=0,r,2, '
otherwise
L0
is a probability mass function

li

(pmf) of a discrete RV X.

cta BNN rdirac X nio tl6.

u) rina: (i) P(x = 2),


b)Tim: (D

't.l={i(*)cdn t4i
[o

I

(ii) P(x<2), (iii) P(x>l).

hdm khlii'luqng

D^s:

2.7**. Consider

a function

r(x) =1fe-1x2+x-a), -@ < x < @.

xlc

suSt

(pnifl

P(x=2),

(ii) P(x <2), (iii) P(x

1461


hiQu nny

phin nhu sau:
b-10, c-l 10, d-l

bit). Tap gi6 tri cia X li gi? Gi6 sr!
viQc sinh kj hi$u li ttQc lflp, tfnh

symbols (bits). What is the range

>

t).

""
'64' ' 6i;"')tr'
' il1:ii)
63

b)

I

v
2.7**.Xethim sti

r(x)=

uf


e-("2***u)' -@ <.x
.

243


.

Find the value of a such that (x) is
a probability density function (pdf)
of a continuous RV X.

Assuming that X is a normal RV
witlr mean 1000 and variance

Tim gi6 tri cria a sao cho f(x) ln
him rnflt d0 (pdfl cria BNN li6n
tgc X.

2500. Find the probability that
resistor picked at random

D& a=1.
A RV X is called a Rayleigh RV if 2.8. BNN X dugc gqi ld c6 phdn b6
its pdf is giverr by
Rayleigh niiu him m6t d0 cria n6
fy (x) =


a)

f

e-*2

rx (x)

Determine

the cumulative

distribution function (cdf)

Fx

(x)

every nine good chips. Let

=f

b) Ve Fy(x) vd

b) Sketch Fx(x) and fx(x) for
o= l.

2.10*. The number

of


telephone calls
arriving at a switchboard during
any l0-minute period is known to
be a Poisson RV X with l. = 2.

n

c) Calculate E[X],

VXl, Mod(X).

A

production line manufactures
1000-ohrn (C)) resistors that have

2.11'*.

l0

percerrt tolerance. Let

X denote

of a

resistor.

the

244

resistance

b) One year of use.
2.13. The radiat miss distance [in meters

(m)l of the landing point of a
parachuting sky diver from the

of the target area is known
to be a Rayleigh
RV X with
'l'
parameter o- = 100.
center

a) Find the probability that the sky
diver will land within a radius of
I 0 m frorn the center of the target

b) Tim x6c su6t kh6ng c6 cugc ggi
nio trong vdng l0 phfit.

ttiSn

b) Find the probability that no calls
arrive during any lO-minute
period.


c) Tinh

with a good chip, Find the

a) Six months of use;

a) Tim x6c su6t c6 qu6 3 cugc ggi
d6n trong vdng 10 ph6t.

will

^",
/"=-

probability that a chip purchased
randomly will fail before:

?"= 2.

any l0-minute period.

L=;

RV with parameter
for a defective chip and

I

2.10*. S(i cugc ggi diSn I t6ng ddi trong
l0 phtt le BNN Poisson X vdi


a) Find the probability that more
than three calls will arrive during

be

exponential

fy(x) khi o = l

2.9**. Consider a gaussian RV X with 2.9**. X6t BNN chuin X v6i cric tham
s6 p=-1, 62 =4. Vi6t him m{t
Parameters p=-1, o2 =4. Write
the pdf of X and calculate the
ttQ cfra X vd tinh c5c x6c su6t
following probabilities P(X>0),
P(X>0), P(X<-0,5), e(Xl<21.
P(X < -0.s), P(xl< 2).
ES: 0,3085; 0,5987; 0,6247.

X

to failure (in months) of
chips. It is known that X is an
time

e-*2rtzo2)u1*;.

a) Tim him ph6n b6 n*1x1.


.

lo4ib6.

be

computer memory chips, company
A produces one defective chip for

cho bdi

rtz"2)r,*r.

a

In thq manufacturing of

2.12**,

ElXl, VlXl, Mod(X).

D& a) 0,143; b) 0,135.
Y

2.11**. MQt d6y chuy6n sin xuit diQn
trd 1000 6m (O) ttusc phdp x6
dich l0%. Kf hiQu X la tr! sti cria
ttiQn trd. Gi6 sri X c6 phdn b6

'


vd

phuong sai 2500. Tim x6c sudt m$t
chi6c di€n trd chgn ng6u nhi6n bi

rejected.

4

2.8.

will

chuin v6i trung binh 1000

)_

ES..0,045.

2.12*r,. Trong viQc s6n xu6t chip nh6

mdy tinh, c6ng ry- A sin su6t I
chi6c h6ng v6i cd 9 chiric t6t. Gie
sir X li tu6i thg (theo th6ng) cria
c6c chip. Bi6t ring X ti BNN mfi

v6i tham

,o i,=]


Z

h6ng vd ,t =

"

+
l0

aoi voi ctrip

v6i chi6c chip t6t.

Tim x6c su6t di5 I chi6c duoc chgn
ngdu nhi6n sE bi h6ng:
a) Sau sdu th6ng sri dUng;
b) MQt nIm srl dgng.
DS; a) 0,501; b) 0,729.
2.13. D0 lQch (theo m6t) cria di6m tiiSp
d6t cta vfn rlgng vi€n nh6y dir t6i

tdm virng mgc ti6u li BNN X c6
ph6n b6 Rayleigh X v6i tham s6

o-=

100.

a) Tim x6c su6t tlii vQn clQng vidn

nhdy dir ti€p d6t trong vdng b6n

kfnh

r:

lOm tri tdm virng mgc

ti€u.

afea,

b) Tim b6n kinh r sao cho x5c su6t

b) Find the radius r such that the
probability that X > r is e-l .

deX>rbinge.l.

2.14r"'.lt is known that the floppy disks
produced by company A will be
defective with probability 0.01.
The company sells the disks in

u. ,S

a) 0,393; b) 14,142 (rn).

2.14"*. ei6t ring c6c dTa nh4c sin su6t
bdi c6ng ty A sE b! h6ng vdi x6c

su6t 0,01 . C6ng ty b6n dTa thdnh 16

I0 chii5c mQt vdi

lli

eldm bdo

li

s6

245


packages

of l0

guarantee

of

and offers

a

'.

replacement that at


I

of the l0 disks is defective.
Find the probability that a package

most

pr.rrchased

will

thay

ci

c6 qu6

16 n6u

I

ifia

bi

c) Find

rtt


and the variance

ra b! thay thti.

2.16*. Let X be an exponential RV with

-i'7"'

s6

I

ri6m tra ring,

a

sequence of 2.17t"'. X6t dny c6c phdp tht Bemoulli
vdi x6c su6t thinh c6ng p. Ddy ndy
Bernoulli trials with probability p
duo. c quan sit tt6n ldn thri thinh
is
of success. This sequence
c6ng tliu ti€n. Gii sir BNN X kf
observed until the first' success
hiQu sii lin th& cho tltin ph6p tht
denote
the
Let
the
RV

X
occurs.
thinh c6ng ttiu ti€n. Khi tl6, him
trial number on which this first
kh6i luqng x6c su6t (pmf) cta X
success occurs. Then the

of

is given by

px (k) = P(X =

k)

P(X

>c).

-

of RV X be given by 2.19. Hdm mit ttQ cta BNN X cho bdi
fy(x) = kxe-xu(x).
fy(x) = kxe-xu(x).

2.19. Let the pdf

a) Find the constant k, Mod[X].

E[x]. Elx2l,


a) Tim hang s6 k, Mod[X].

vtxl.

c) Find the pdf ofthe RV

b)

lE.

the first success occurs on trial X).
The RV X is called a geometric

ttugc ggi le BNN c6 ph6n tO trintr
hqc v6i tham sti p.

RV with parameter p.

a) Chung t6

a) Show that py(k) satisfies the
@

=t

-

ring py(k) thoi mdn
q


phuongtrinh

fRx(k)=I.
k=l

.

b) Tim him phdn bO

Tirn E[x], ElX2l, VlXl.

c) Tim him m6t tl$ cria
DS. a) k =1,

b) 2,

r*1x;.

1&.

Mod[X]=l;

6,2;

c) fu7(x)=2x3e-*2u(x).
2.20. Find the mean and variance of a
Rayleigh RV (see Prob.2.8).

2.20. Tim k! vgng vi phuong sai cria

BNN Rayleigh (xem bditap 2.8).

D& E(x)

(There must be k - 1 failures before

(Phni c6 k

c,d>0,
P[X>c+dlx>d]=P(X>c).

k)

I th6t bai trudc lin thri
thinh c6ng X iliu ti6n). BNN X

k=l

>c+dlx >d]=

\.

=(t-p)u-'p, k=1,2,...

p)o-' p, k = 1,2,...

BNN mii X v6i tham si5 l.
Chi ra reng BNN X c6 tinh ch6t
kh6ng c6 tri nhq chinh ld: V6i mgi


z.t{.*.xdt

the

cho bdi
px (k) = P(X =

lp*(L)

P[X

b) Finct

x

probability mass function (pmf)

2.18**. Consider an exponential RV X
with parameter 1.. Show that the

RV X

Tinh Med(X), so s6nh v6iE[X].

larger,

E[X] or Med(x)?

2.17t,,'. Consider


L3.
pp2

haS
memoryless
property, that is: For all c, d > 0,

I
r- I
ElXl =; vi V[X tL
L,'

..

Find Med(X). Which is

equation

DS..

c) n = I,2,...; 1,

2.16*. Gqi X le BNN ph6n b6 mfr tham

Verifr that,

r-_l
E[X]=: and V[X]=

-


V[X].

b)xe [n;n + l) : F(x) = I -(1 -p)n,

I.
DS:3-5:
"12

= (t

value E[X]

the

have to be replaced.

sai cria X.

X

c) Tim k! vgng E[X] vd phuong
sai V[X].

DS..0,004.

2.15. Let a RV X denote the outcome of 2.15. Gqi X le BNN chi kiSt qui khi rrlt
mQt con xirc xic cdn throwing a fair die. Find the mean
tri trung binh (ki vgng) vi phuong

(expected value) and variance ofX.

parameter i'..

b) Find the cdf Fy(x) of X.
'expected

.

h6ng. Tim x6c su6t tt€ mQt 16 tluo. c

V[X]= (Z-ntZ)oz o0,429a2.

2.21**. Given that X is a Poisson RV 2.21*t', Cho
and Px (0) = 0.0498 , compute E[X]
and P(X > 3).

=GIi o;

X ld BNN Poisson vi

Px(0) = 0,0498 '
Tinh E[X] vn

Pfi

> 3).

DS. 3; 0,5767.


A RV X is the Pareto random
variable with parameter a, b
(a, b > 0) if its pdf is given by

2,22.

fx(x)

=

(a/b) (b/x)a*l, x € [b;

*)

X ld BNN Pareto vdi c6c
s6 a, b (a,b>O) n6u him

2.22. BNN
tham

mAt dg cria n6 cho bdi

fx(x) =(a / b) (b/x)a+l, x e[b; o)
247


'

a) Show that E[Xn] exists


if

and

'.

onlyifn
a) Chi ra rang E[Xn] t6n tai

vdchiniiu n
b) Find E[X] and

Elx2l (a> 2).

2.23*. Show that for a Cauchy RV with
the parameters a. b with pdf

tham s6 a, b v6i mQt <10

,.,

(b > 0) tlre mean does not exist.

(b > 0), k) vgng kh6ng tdn t4i.

x (x_a),

N(pr, o2 ) , evatuate E[X3 ]


2.24. Giasti X

- N(p,o2), tinh

DS: 3o2p[l + p3]
2.25. Suppose.that Z

-

N(0,1)

2.25.Gie sir ring Z

.

a) Evaluate ElZl.

a)

-

Ax--r0

xelR

+b.

J


xfxlxlep;dx,

,-,,

Ax

P({x
E[X3].

n

fi=t qxlen)p(Bn).

Elxl=f e1xln"in1e"1
i=l

2.28. Consider an integer, nonnegative
RV X. Show that
.

2.28,

X& BNN nguy6n, kh6rrg 6rn X.

Chring t6 ring

6

9o


Elxl=)P(x>k).

rinh Elzl .

Elxl=fe1x>r<1.

k=0

DS:

J2/tr

b) Chi ra

b) Show that

E[22"7= 1.3...(2n

- l)

/

2.29. Let

E[22")= 1.3...(2n -1).
th6y s6 qui cam tr€n mQt cdy tu6n

than 20 orallges and 30 ones with


Nguli ta d6m
thfi 600 cAy thi th6y 15 c6y c6 it
hsn 20 qui, 30 cdy c6 it hon 25

less than 25 oranges.

que.

with

less

a) Hey udc tugng

one tree.

binh tr6n mgt cdy.

with more than 60 oranges.

trees

b) U'6c lusng ty

si5

s6

li BNN Poison vdi tham
i..tim Mod[X] khi ].>l vd


khi l.<1.

0<1"<l : Mod[X]=0; t.> l:

uoarxt={lhl,
Lf-l

IQ

5l,l;b)29

2.30**. The cycle of the traffic light is 2
minutes of green followed by 3
nrimutes of red. What is expected
delay in the journey if you arrive at

qui cam trung
cdy c6 tir

60

qua trd l6n.

DS. a)

%.

2.27**. (Total Probability Theorem for 2.27* (Dinh lf x6c sulit toin phAn vdi
k) vgng). Xdt BNN X tr€n kh6ng

Expected Value). Consider a RV X
gian m6u S. Xdt ph6p phdn ho4ch
on a sample space S. Consider a
partitiorr {81,...,8n} of S. Define
{B1,...,Bn} cta S. Dat

248

when

2.2g. Giesri X

theo ph6n bl5 chuAn.

a) Estimate the average oranges in

b) Estimate the ratio of the

with

D,S..

of oranges in a tree follows normal
trees there are 15 ones

k=0

a Poisson RV

Mod[X]

?'. > I and then 1, < l.

2,.26**. O mQt vtng trdng cam, ngudita

ln the 600 counted

be

parameter tr". Find

ring

2.26)'*.ln the orange-region the number
distribution.

X

Ax

^i]o
Chi ra ring

l1

Etxl=

k = 1.2,...,n

,r"]e ao fy(x I B) =


Show that

.

N(0,1)

@

k = 1,2,...,n

*n"r" ,11* I ,y =
P({x<.X
2.23*. Chi ra ring a6i vOi BNN Cauchy

f*1x1=1-i-,

-

xfxtxl\)clx,
J

b)Tim E[X] vd Elx2l (a>2).

O- -. xeR
n(x-a)'+b'

E(xlnnl=

co


fy(x1=1

2.24. l-et X

E(XlB*1=

n6u

gL

the junction at a random time
tuniforrnly distributed over the

k! c0a tldn hiQu giao th6ng
g6m 2 phfrt xanh r6i d6n 3 ph0t rt6.

Tinh thoi gian cho trung binh cria
di n6u ban tti5n ngd tu t4i
m$t thdi ili€m ngiu nhi6n ph0n b6
chuy6n

tl6u trong khodng thdi gian 5 phrit.

X-

HD:

Hint: X - the delay, T


dirlm b4n d6n ngd tu.

\ 0
X=0;

2Use tlre Problen 2.27.

tr6i lai

2.30**. Chu

whole 5:minute cycle?

- the time
when you arrive at the junction.

}'"e{2,3,"'l

Thdi gian chd, T

- thoi

0<'[<2:X=0;
2Sfr dpng Bdi tfip 2.27

.


D,S..0,9.

l0 shots 2.31. Gie sft mQt chi6c tdu chi6n bin l0
ph6t vio mpc ti6u vi cAn ft nh6t +
at a target, and it takes at least 4

2.31. Suppose a warship takes

249


hits to sink it. If the warship has a
record of hitting with 20% of its

'.

ph6t trring ai5 Aanir chim n6. Trong

a) Determine the value of k.

thli

gian ddi, nguli ta ghi
nhgn ring c6 20% lAn tiu bin
mQt

shots in the long run, what is the
clrance of sinking the target?

trring dich, co hQi

ti€u Ii bao nhi€u?
K

di5

a) X6c ttinh gi6 tri cria k.

b) Find the probability that

the
distance from the origin of the point
selected is not greater than a < R.

b6n chim mpc

c) Find the marginalpdf of X,

,s..0,1209.

b) Tim x6c su6t mA khoing c6ch tir
g5c d6n di6m chgn kh6ng vugt qu6

ac) Tim him mQt rtQ bi6n cta X

y.

vd Y.

2.32**. Wearever tires have a truct 2,32"*. Nhiing chi6c l6p cria hdng

record of lasting 56000 miles on
Wearever de ghi nhfn mQt k! lgc
everege, with a standard derivation
khring khiiip h tli tlugc trung binh
of 8000 miles, and a normal
56000 d{m v6i rtQ l6ch chuin 8000
distribution.
d[rn vi c6 ph6n b6 chuin.
.
a) What is tlre chance that a given
tire will last 50000 miles?

a) Tfnh xric su6t a,i

t cni6c l6p de

cho di dugc it ra 50000 dam.

b) Wlrat is the chance that all four
Wearever tire on my car will last

b) Tinh x6c su6t tlti cA 4 chitic liip

50000 rniles?

dugc ft ra 50000 d4m.

$6.3.

[0,


3.1*. X6t hdm
os

x,y < oo,

otherwise

Can this function be a cumulative

distribution function (cdf) of a
random vector (X, Y)?
3.2. Suppose we select one 'point at 3.2.
random from within the circle with
radius R. If we let the center of the
circle denote the origin and define
X and Y to be the coordinates of
the point chosen, then (X, y) is a
uniform random vector with the
prob. density function (pdf) given by

r*" 1*,y;

=

{k'
lo,

xe cria t6i s6 tli


8Ar TaP CHUONG rrr

3.1*. Consider a function

F(x.v)
.J t _ Jt -"-(**r),

Wearever tr6n

x2 + Y2

'R2
*2+y2rR2

F(*,y)

=

{t

-

"-(-*')'o

[0,

( x'Y < oo,

nguo, c


lai

Hdm ndy c6 thrS ld him ph6n b6
(cdf) ctia VTNN (X, Y) hay k}r6ng?
Gie sri ta chgn I di6m ng5u nhidn
trong hinh trdn b6n kinh R. N6u kf
hiQu tdm vdng trdn ld gi5c to4 116 vi
X vd Y li to4 tlQ c0a diiSm chgn,

khi d6 (X,D Ie VTNN vdi
mft

ttQ

hdm

x6c su6t (pdf) cho b&i

r*"
"' = {k'
'rr\1*,y1

*2 + Y2 < R2

[o' *2+Y2'R2

DS; a)

c)


1=];; Ul4;
rR' Rr'

Ir.fi'_l

fy(x)=1-r;r-'

l*l
Lo,

,

l*1, R
3.3**. A manufacturer has been using 3.3**. Nhe sin su6t
dirng 2 quy trinh
two different manufacturing
s6n xu6t kh6c nhau ae ian xudt
processes to make computer
chip nhd m6y tinh. Ci6 srl (X,y) te
memory chips. Let (X,y) be a
VTNN,. trong d6 X kf hiQu thdi
random vector, where X denotes
gian tti5n h6ng cria chip sin su6t
the time to failure of chips made
bdi quy trinh A vi y ld thli gian
by process A and y denotes the
time to failure of chipsmade by
trinh B. Gid st hdm mflt d0 cria

' piocess B. Assuming
that the pdf
(x,Y) ta
of (X,Y) is
f (*,y) = {ub"-(u**u'), x > o,y > o
f (*,v) = {uu"-(**u'), x > o,y > o
nguoc lai
[0,

[0,

otherwise

where a=10-4 and
determine P(X >

y).

b=l.2xl0-4,

trong d6 a=10-4, b=1,2.10-4,
tinh F(X > Y).

D,S:b/(a+b)=9,545.
3.4*. Let (X, Y) be a random vector, 3.4*. Gia srl (X,
n le VTNN, trong d6
where X is a uniform RV over
X ld BNN phdn b6 (0; 0.2) and Y is an exponential
vi Y li BNN mfr v6i tham s6 5,

RV with parameter 5, and X and y
X vi Y tlgc lfp.
are independent.
a) Tim mft a) Find the pdf of (X, y).
b) Tim P(Y < X).

,

b) Find P(Y < X).

D,S..

a)fxy(x,y)

--[zs"-tt,

lo,
b) e-l = 0,368.

0nguo. c

l4r

251


35. Cia sft m{t ttQ cira (x, Y) cho bdi


3.5. Let the pdf (X, Y) be given by

fxv (*,y)

{*t-*(vnr)'

=

[0,

x > o'Y > o

>
fxv (*,y) = {*t-*(v*t)' x o'Y > o

[0,

otherwise.

a) Show that fay (x,y)

a) Chring t6

satisfies

I

J Ifr"t*,y)dxdy=1

ring fly(x,y)


;;"

Ti---a, d0 bi6n cria X vi
D& a) e-*, 1x>0;;
Ol

marginat pdf of X and Y.

3.6**. The

iaf of a random vector
"-"*

xt -

(*,y)= j x >0, y)0,

"-g*
cr,

),

0>0;

lo,
t'

otherwise.


b) Tim hnm kh6i lugng x6c

su6t

mass

b) Find the marginal pmf of X

bi6n cria X vd Y.

and Y.

c) Phni ching X

c) Are X and Y independent?

D,S:

and

Y

are

t6p.

c) Find

c) Tim


a)pyy(0,0) = 0,45; pay(0,1) = 0,05;
pxv (1,0) = 0, l; p1y(1, l) = 0,4.
b)px(0) =px(l) = 0,5;
Pv(o) = 0,55;py(l) = 0,45.

3.8**. The pdf of a random
(X, Y)

10,

c)
3.7. Consider the birrary communication

Prob. 1.22. Let

(X, Y) be a random vector, where
X is the input to the channel and Y
is the output ofthe channel. Let

1t

o 1x'Y 12'

a) Find the value of k.

b) Tim mdt tiQ bi6n cia X, Y

lo,

b) Find the


.otherwise

marginal pdf

of

ft

X

c) X

vi Y ln tlQc l6p?

DS: a)k =

I

r;

0ul{(*+l)14,
-'
'

>0.{l -e-o}, v ) o
y<0
x<0 [0,


10,

nguo.clai

c) Kh6ng.

3.9*. Let (X,Y) be a random vector.

-e-ax)(l -e-oY1.
1.22. Gia sri

H hing s5).

and Y.

x

(X, Y)

lA

VTNN trong d6 X ln diu vio k6nh
vd Y li dAu ra cria k6nh. Gii sfr

r(x=0)=9,5t

o (x-v)=ln(*+Y)'
\ "'
ngugc l4i

[0,

a) Tim k.

- e-a Xl - .-0 );

tfp

f

wherekisaconstant.

3.7. Xdt k6nh th6ng tin nh! ph6n nhu &

bni

3.8**. Hdm phdn b6 cfia (X,Y) cho bdi

is given by

c) Are X and Y independent?

{l -"-"*,

b) (l

vector

c) Dfine.


vi Y ld tlQc

D.9l

u;

\a

f(x-v)=lo(**Y)'
\ "'

P(x<l,Ysl), P(x, *,Y>y).

l,Y < t), P(x > x,Y > y).

vi Y tl6c l6p?

vi Y.

Tim him ph6n h5 bi6n cua X

independent.

in

function (pmf) of (X, Y).

probability

nguo.c l4i.


b) Cht?ng t6 ring X

as

su6t

a) Find the

Y.

e-o* Xl ),
[,, "-o*
Fxv (*,y) = j * >0, y 20, g, F>0;

b) Show that X

channel

a) Tim hnm kh5i lugng x6c
cta (X, Y).

3.6**. Him ph6n b6 cria VTNN (X.Y)

a)

<

o)= o.l,


l/(y+l;2,1y>0;.

a) Find the marginal cdf of X and Y.

P(x

=

,YI

I

10,

r;x

cho bdi

is giverr by

[(t
t' -

=

r(v = tlx = o)= o,l
va r(Y=0lX=l)=0,2.

and P(Y=olX=t)=0.2.


tho&

If*"(*,v)dxdy=1.

b)

Fxv

P(v

c l?i.

co@

@@

(X, Y)

ngu-d.

min phuong trinh

the eqution

,,

R(x=o)=6.5,

,


Show that

[e(xv)]2 e(xr)e(vr).
This is known as the Cauchys

Schwarz inequality.

3.9*. Cho

(X,U HVTNN. Chungt6rdng

[E1xv1]2 s e(x'?)e(v'?). r.i,
tting thfc (BDT) niy c6 t6n li
BDT Cauchy-Schwarz.

i/D: E[(X-aY)2]> 0, Vae R.

253


N

3.10**. The pdf of a random vector 3J0**. Hdm
cho bdi
(X, Y) is given by

, [k*y, 0=
otherwise
to,


t

mQt <10 cria

VTNN (X, Y)

. [k*y,
" 0
fxy (*,y)

^ (*,y)
fxv

wherekisaconstant.

trong d6 k ld hing s6.

a) Find the value of k.

a) Tim gi6

3.11**. Consider the random

x

vector

(X, Y) of Prob. 3.8.


a) Find the conditional pdf
r1a (vlx) and raly (.lv)

=

D^S. a)

(
\

X vi Y

tlQc

lQp?

b)rrnh

r

lo,

a) Show that f1y(x,y)
the equation
O@

I If*"(*,y)dxdy=1.
t;; e(x >tlv =y).


satisfies

D^Si

a)f;(x)=2x, (0fv(v) = 2(l - y),(o < y < l)'

4,to2"

< x,y < 2;

bdi

[1"-*'r.-Y,x)o,y>o
f (x,y)=.{ra) Chung t6

nguo.c

ring fyy(x,Y)

3.16. The pdf of a random vector (X, Y)
is given by

l3i.

fxy (*,y)

thon


@@

I If*"(",v)dxdy=1.
P(x,rlv=11.

b) Are X arrd Y correlated?

254

D^S: a)

Kh6ng; b) Kh6ng.

=

{t-(**')'

|.0,

x > o,Y > o
otherwise.

Y) le VTNN chuAn. Tinh

E(Ylx).

px + p(x - py)oy / ox

3.16. Him mat dO crha VTNN (X, Y)
cho bdi


fxv (*,y) = {"-(**')' x > o'Y > o

10,

nguo. c

l4i

a) X

b) Find the conditional pdf of X.

b) Tim m$t iIQ
vi Y

le dQc lfp?

DS; a) Dring; b)

,

.

a) Are X and Y independent?

3.17. Let (X1,...,Xn). be an n-variate

D& b) e-l/r.

3.13. Suppose that a random vector 3.13. Gie srl VTNN (X, Y) ph6n bli tr€n hinh trdn don vi (xem BT 3.2)'
(X,Y) is uniformly distributed over
(Prob.
3.2).
a unit circle
' a) X vi Y li tlQc lflp?
a) Are X and Y indepenA"i,tt
b) X vi Y Ii tuong quan?

3.15. Cho (X,

D,S.

m6n phuong trinh

;f,

y.

a) Tim mdt tlQ bi6n ctia X vd

e(vlx) va e (xlv).

3.15. Let (X,Y) be a normal random
vector. Determine E(Ylx).

[0,

c lai.


b) Tinh trung binh ttiAu ki6n

3.12. Him m6t tlO cta VTNN (X,Y) cho

otherwise.

nguo.

uli,to
a.
'32

. [1.-*rr"-Y,x)o,y>o

v6i him

b) Compute the conditional means

.

b)

f(x,Y) = i

X

DSi


jffi,o

te VTNN

and Y.

e(0.v.Il*=,).

(rl-)=

y)

|.U,

a) Tim mat do tli€u kien
r1,1(vlx) va r*1y(xlY)

3.14. Gia st (X,
mflt ttg

r*r(*,y)={1' o
E(ylx) ano e(xlv).

3.11**. xet VTNN (x,Y) d BT 3.8.

a) rvlx

3.12. The iaf of a random vector (X,Y)
is given by


('> ocy=
otherwise.
t;,

a) Find the marginal pdf of

8; b) Kh6ng.

.

b)FindPl 0'21"-')'

f*" (*'Y)

nguo.c l4r

to,

tri k.
b) Phai ch[ng

b) Are X and Y independent?

3.14. Let (X, Y) be the random vector
with the pdf

normal random vector with its pdf

given by Eq. (3.6.a). Show that if
the covariance of X; and X; is
zero for i *

j, that is,
'. (t

then X1,...,Xn are independent.

(x > 0).

sri (X1,...,X1) ld

J,

VTNN

chuin n thinh phAn v6i him mft
tlQ chi ra d c6ng thric (3.6.4).
Chung t6 ring, n6u X; vi X; ti

li
cov(x;,x.;)=E,j={"i i=i
[o i*i,

kh6ng tuong quan v6i i *

cov(x;,x.;)=t,.,=lli :=l
,*
LU


3.17. Gia

e-x'

thi X1,...,X1 ErtQc l{p,

j,

tr?c


3.18. The pdf of (X,

Y) is given by
(-u

fxv(*.y)=]:-"
' 10,

rtxy(x'YJ=1
/-.-.\ ["-',
^
' 10,

ootherwise.

0

correlation coefficient of X and

nguo.c l4i.

a) Tim mat dO tti€u kien crha

b) Find the conditional cdf of Y,

b) Tim hdm ph6n U6 al6u kiQn cria

ring X = x.

Y be two independent
identically normally distributed
RVs with zero mean and variance
4. Find the probabilities that the
random pirint (X,Y) belongs to the
circle witlr center at (0,0) and

3.19. Let X and

0

vi

3.23.

If X - U(0;l), derermine

of Y=aX+b, a,belR.


DS.

ngiu nhi6n (X,Y) thuQc vio

hinh trdn tfrm t4i (0, 0)
3 (m).

Ds. flraglx)

vi

= e*-Y, (y > x);

Fy1(rlx)={'^-t*-''

'

b6n kinh

l''

x
x>Y'

l.9,

the RV Y = -'ln X.


If X is N(0;2),y=3X2,

BNN Y

find

=-lnX.
3.26*. Niiu x - rrr(o;z), y =3X2,, tim
ElYl, VlYl, fy(y) vd ev(v).
^-y/12
D^S.'6;72;:-r;
zllty
.

I

3.21*. Which following

matrices are

covariance ones:

,,(; l)' (? i),
"
.,(; i), ,, (;' l),

3.21*. Circ ma trQn nio sau trfn tuong quan:

(z


o\

(z

z+o6[(y -t4)teQ))'
9.27),t

a)

rf

and

256

r=(; l), *" the RVs X

Y independent?

Gii st (X, Y).ld VTNN
v6i ma trfln tuong quan f, .
a) N6u

vi Y li

3.28. Let Y = tan X. Find the pdf of
if X - U(-r l2; n /2) .

y


chuin

r=[; l), "" BNN x

tlOc l6p?

. Let y = x2 . Find the pdf of y
N(0,1).

if x -

D,S.'a, b.

3.22*r'. Let (X, Y) be a normal random
vector with covariance matrix I.

I

r'\

")[; t),D[, tl
,,[; i), ,, (;, i),
v'
3.22r'*.

tr6i lai.

3,24t', The RV X is N(5,2) and 3.24*. Gia srl BNN X-N(5;2) vi
y =2X+4. Find E[y], V[yJ

Y =2X+4. Tim E[y], V[y] vn
fv (Y)'
fv(Y).
325. The RV X is uniform in the 3.25. BNN X c6 ph6n bii tt6u tr6n
interval (0, l). Find the density of
khoing (0, l). Tim m{t rtQ cria

ElYl, VIYI, fy(y) and Fv(y).

x-N(0,4), Y-N(0,5).

x-N(0,4), Y-N(0,5).

Vdi a>0:

b<*r-r*t=JI/lal,
I\ /

3.26*.

3.20. L{p lai Bnitflp 3.19 v6i

vi Y.

the pdf 3.23. N6u X - U(0;l), tim hhm m6t d0
cria Y=aX+b, a,be IR.

phuong sai 4. Tim x6c su6t d6


di,5m

\r

tuong quan gita X

3.19. Gia sfr X vi Y ldz BNN ttQc l4p
cirng phdn b5 chu6n vdi trung binh

radius 3 (rn).

3.20. Repeat the Prob 3.19 for

y.

l\ titn
z=(o 9J'
he t'

-6I.

Y,bi6tring X=x.

X=x.

b) N6u

Ans: a')Yes: b)

Y bi6t


a) Find the conditional pdf of Y,
giventhat X=x.
giventhat

b) rf z=(o I \ find the
\ r s)'

3.18. Hdm mflt ttQ cta (X, Y) cho bdi

.td

3.27*t. Gi6 sri Y=X2. Tim him m6t
ttQ cria Yn6u X - N(0,1).
3.28. Gia

st Y=tanX.

cta Y n6u X

-

Tim him mdt

U(-rc / 2; x I Z)

D,Sj BNN Cauchy vdi tham si5

S.Z'q. Show


that,

if the RV X has a

Cauchy density

with a=0; b=l

(see Prob. 2.19) and Y= arctanX,

then'Y is uniform in the interval

(-n12,-xl2).

l.

3.29. Chung t6 ring n6u BNN X c6 mft
ilQ Cauchy v6i a=0;
(xem

b=l
vi Y= arctanx, khi
d6 Y phin b6 ddu tr6n
bni tflp 2.19)

(-n12,-nl2).
257



3.30. Let X be a continuous RV with the

pdr ry

(.)

|

=

^'

^-x

t;,
pdfofY

[0,

otherwise.

l;Tt'

fv(v)=

is

0
li


rv

DS:*exnr${r;$;0.

BNN li6n tpc vdi mft

x> o
c<0.

Tim ph6p bi€n dOi Y
cho mdt tlQ cria Y ld

Y = g(X)

It

Cia sfr X

["-*,
dQ rx(x)=t;,

::l

Find the transformation
such that the

S.SO.

-


3.34. Consider

g(X)

l+,

ocy
[0,

nguo.c lai.

(v)=l z./v'

Y=eX.
Find E[Y] by using fy (y)
then by usirrg f1 (x).

3.31.

and

and

3.32. The a-centered clipper is described
by the following transformation

'


[*-u,

g(x) =

sao

I

lx+a,

x

e(*)

=,

=.1

<-a.

a) Plot this fuiction for

o,

x

vii

Y


a

2u2.

are

X

and

pdf

c) What type of the RV Y when X

v

g(X)

.

c) Dgng cria BNN Y
BNN li6n tuc.

li

gi ntiu X

li

3.33**. Suppose that (X,Y,Z) is a j.sg**. Gii sri ring (x,Y,z) le VTNN

chuln voi vecto trung binh
normal random vector with mean
p = (0,1,2)T

vi

rira

t{n

tuctng quan

( t 0,5 0,5)
tt
t=l 0,s 2 0 l. Tim
[o,s o 4)
mat d0 cria BNN T
vA

tinh pry, pyz.

tlQc

3.35. Gia st rEng, X vi Y li nhtrng
BNN chuin tirc ttQc l{p. Tim m$t

tlQcfiaZ:X+Y.
DS: Z - N(0,2).

Y be independent


of Z=XY.

3.36. Gia srl X

vi Y ld niing BNN phdn

U5 adu tren

(0; l). Tim mit tlg cta

Z=XY.

. [-m*, 0|.0, nguo.c l4r
3.37. Gie srl X vd Y li nhiing BNN
DS. f"(x) = {
'

X

and

Y be independent

tic

standard normal RVs. Find the pdf

chu6n


of Z=XIY

Z=XlY

.

aQc gp. Tim

m{t tlg.cua

1

a.

tlQ cria Y =

X

DS.'BNN Cauchy.

b) Tim hdm phin bi5 vi hAm mdt

RV T = X-2Y +32
pxy, pyz.

and

+


gi6 tri

b) Find the cdf and pdf of

the pdf of the
and calculate

X

also

1.1

uniform RVs over (0; l). Find the

<-a.

cta

(
o.s\
tt t o.s
matrix E=|0.5 2 0 l. Find
[0., o 4)

Z is

vi tlugc

ofa.


vector p = (0,1,2)T and covariance

3.36. Let

3.37. Let

a) Ve dd thi hnm ndy v6i

various

y=g(X).

'

then

independent standard normal RVs.

l*l = u

[x+a,

is continuous.

respectively,.

3.35. Suppose that

x>a


Z = X + Y. Chung t6 ring,
vi Y li nhtng BNN Poisson

l{p vdi tham s6 X.,, f,2 tuong
ung thi Z cf,rng le BNN Poison v6i
tham s6 lq + ?,,2.

m6taboi 6nhxgsaucl6y

[x-",

3.34. Xdt
ntSu

FindthepdfofZ=X+Y.

3.32. B0 x6n, hu6ng tdm a tlon

I

l*l

if

X and Y are

Poisson RV with parameter

cia sr! X ld BNN c6 ph6n bi5 ddu

tr6n(0,1)vi Y=eX.
Tim E[Y] bing c6ch dirng fy (Y)
rtii sau tt6 dtrng fx (*).

x>a

j0,

X + Y. Show that

independent Poisson
RVs with parameters ?y and ?,2,

ES; y=11_"-*)2.
3.31. Let X be an uniform RV over (0,1)

Z:

3.38**. Let X and Y be two RVs with

joint pdf

'

(*,y)

joint cdf
fxy (*,y). Let Z= max(X,v) .

a) Find the cdf of Z.


(x,y)
vd hem m$t dq d6ng thli
f*" (*,y) . DAt z =max(x,v) .

b) Find the pdf of Z if X and Y are

a) Tim him phin b6

independent.

b) Tim him m4t tlO cria Z niSu X
Y tlQc lflp.

Fxv

and

hdm ph6n b6 tt6ng thdi'Fxy

ciaZ.

vi

DS; a) Fz(x) = F1v(x,x);

him

=X-2Y +32


f7(x)=--:--=-, x€lR.
zr(l + x')
Y.
3.38**.
Gii sti X vi Y lA 2 BNN vdi
.a

b) f2(x) = fx(x)Fv(x) + Fy (x)fy(x)
3.39. A voltage

V

is a function of time

and is given by

t

3.39. MOt hi€u tli€n thii V ld hi.rn cria
'
thdi giair t vi cho bdi


'. v(t) = Xcosort + Ysinrot

v (t) = X cos ort + Y sin
in which

a) Show that X


li tAn sii g6c kh6ng d6i,
X = Y - N(o;"'z) vd chong tlQc

is a constant angular
frequency and' X=V-N(O;o2)

trong d6

and they are independent.

t0p.

a) Show that V(t) may be written

a) Chrng t6 rdng c6 th6 vitit V1t)

as

co

V(t)=Rcos(o:t-@).

c,:

that R and @ are independent.

-O).

b) Tim him ph6n bti cria BNN R

vd chring t6 ring R vd @ ttQc lap.
b) fe(r)

E^Si

=;|e

'2

tt2o2)

,(r

> o)

fs6(r,0) = fn(r[o(0)

.

,...,Xn be n independent 3.40*. Ci6 srl X1,...,X1 li n BNN tt$c
RVs each with the identical pdf
lfp ctrng ph6n b6 v6i hdm mat ttQ
f(x). Find the pdf of
(x). Ci6 sri W = Min(X,, ...,Xn).

3.40*. Let

b) X

b) Show that X and Y


are

D,Si

vi Y kh6ng tlQc lap.
a) E[XY]=ElXl ElYl;
b) Elx2y2l + E1x2l Ely2l.

3.44. a) The function g(x) is monotone
increasing and Y=g(X). Show

3.44. a) Hdm g(x) tlon rliQu tIng
Y = g(X) . Chring t6 ring

that

(*), if v > g(x);
F(x.v)=la*
,J '
lP" (v), if y c g(x).
b) Find Fxv (*,y) if g(x)

vi

(x), ndu v >e(x);
Lr" (v), ndu y < g(x).

.r*.rr)=fFx
,r


'

b) Tim Fx" (*,y) ntiu g(x) ttcn
is

tliQu gi6m.

monotone decreasing.

X1

W=Min(X,,...,Xn).

Tim hdm m4t

D&

3.41. Let

X1,

X2 and

X3

be

independent standard normal RVs.


=Xr +X2 +X3,

YZ=Xr-X2,Y3=XZ-X:

Yz = Xr

the joint pdf of

-X2,

Y3 = Xz

-Xr

vi

cria

Esi
(l

\
)
^-[rri+1vi+1v5+1vztt

w"'
I

3.42. Write down the pdf of the random
vector variable


(x,Y) - N(0,

6, 4,9, -0.1)

.

" 2t 2t 2

3.42. Vi6t ra him mat dO cria vecto nglu
nhi€n chuin

(X,Y):

N(0, 6,4,9, -0,1)

.

3.43. Let X and Y be defined by 3.43. Gia st X vi Y xlc tllnh bdi
X = cos@, Y = sin @, trong d6 @
f, = cos@, Y = sin @, where @ is
la BNN phdn bti tt6u tr6n (0;2n).
a' random variable uniformly
distributed over (0; 2zr).

vi Y dQc l{p v6i

mflt

d0 mfi


fx

(*)=o"-"*u(*);

fy (y) = pe-Pru (v).

Find the densities of the following

Tim him m{t tlQ cta cic BNN:

RVs:

a)2X+Y; b) X-Y; c) X/Y;
d) Max(X,Y); e) Min(X,Y).

X-Y; c) I;

Y'
d) Max(X,Y); e) Min(X,Y).
3.46. Chring t6 ring:

3.46. Show that:

Y3.

3.45. Cdc BNN X

.


f" (y) = p"-pru (y).

a) ZX+Y; b)

Tim hdm mflt tlQ cldng thdi
Y1,Y2

3.45. The RVs X and Y are independent
with exponential densities

fy (x) = cre-"*u (x);

cia W.

- F(*)]n-r .
3.41. Gie s[r X1, X2 vi X3 li nhtng
BNN chuAn tic tt0c lap. Cho
Yr

Y;,Y2 and Y3.

tIO

fyy(x) = nftx)[l

Let Y,=Xl *X2+X3,
Determine

"260


a) X vA Y khdng tuong quan,'

uncorrelated.
independent.

du6i dangV(t) = Rcos(ot

b) Find the pdf of RVs R and show

and y

cia 2 mdt tlQ chuAn ld

a) The convolution of two normal

a) T(ch chfp

densities is a normal density;

mat dO chuin;

b) The convolution of two Cauchy
densities is a Cauchy density.

b) Tfch ch$p cta 2 mdt d0 Cauchy

X is of discrete type
taking
tlre
values xn with

,
P{X = xn} = pn and the RV y is of

3.47. The RV

continuous type and independent

of X. Show that
W=

XY,

if Z=X+ Y

ld mdt ttQ Cauchy.
3.47. BNN rdi rqc X nhgn gi6

tri xn v6i

P{X=xn}=pn vA BNN li6n tgc
Y tlQc l{p v6i X. Ch&ng t6 ring
nlu Z=X+Yvd W=XYthi

and

then

Chung t6 ring:

261



f7(z)=lr*

(z

-

s6.4.BAr raP CHTIONG rV

' fr(r)=I& (z-xn)pn;

x" )R";

4.1*. HSng san xu6t khi de nghi€n ctu
automobile engine is being
thdi gian d6nh hla kh0i investigated by a gasoline
cta dQng co 610. Khi thti vdi mQt
. .!.
manufacturer. The following times
chi6c xe tdi, ngu&i ta thu duo. c c5c
(in seconds).were obtained for a test
s6 tieu sau (tlon v!: gi6y): 1,70;
vehicle: 1.70, 1.92, 2.62, 2.45, 3.09,
1,92; 2,62; 2,45; 3,09:, 3,15; 2,53;
3.15,2.53,and l.19.
1,19.

4.1*. The "cold start ignition time" of


f*(*)=+**[*),,

fwr*)=T**[*),",
f1(x) .
Let Y =lXl. find the pdf of Y in
terms of f* (*).

3.48. Let

X

be a RV with pdf

3.48. Gia s&

X

li

f*(*).Gii

BNN v6i him mSt

ttQ

Y=lxl. Tim him
mflt ttQ cria Y qua f* (*).
srl


,,S:
ry (x) =
Y = sin X, where X is
uniforrnly distributed over (0; 2z).
Find the pdf of Y.

3.49*.

Let

.

t.,*,'J:ol

{l:,,.,

3.49*. Cho Y = sin X, trong tl6 X c6
phdn b6 ddu tr6n (0;2n). Tim him
mat d0 cta Y.
D^Si

f"(y)=

lr",[4),

10,

-lnguo.c lai.


3.50. Consider an experiment of tossing

3.50. Xet thi nghiQm tung d6ng ti6n c6n

a fair coin 1000 times. Find the
probability of obtaining more that

d5i looo dn. Tim x6c su6t nh6n
dugc qui 520 m{t s6p:

520 heads:

a) By using formula (3.7.10);
b) By formul a (3.7 .12).

a) Dtng cdng thric (3.7.6);

P(Y < x)

^v


DS: a) 2,1 89h; b) 2,195h.

4.2. A second formulation of the gasoline
was tested in the same vehicle, with

the followirrg tirnes (in seconds):
I.80, 1.99, 3.13, 3.29, 2.75, 2.87,

3.40,2.46, 1.89 and 3.35. Use this
new data along with the cold start
times reported in Exercise 4.1 to

4.2. Hinh thric

tht

hai cria su tl6nh hia

tlugc thri vdi cirng chilic xe tai vi
thu dugc sl5 tieu thdi gian nhu
sau: 1,80; 1,99 3,13; 3,29;2,75;
2,87;3,40;2,46; 1,89 vi 3,35. Srl
.
,(..^
1...^
dung so ll9u nay cung vor so lr9u

d bdi t$p tr6n vd thbi gian xu6t
xiy dung dd thi so
s6nh d4ng hinh h$p. ViiSt mO ta vd

th6ng tin mi bpn th6y

duo. c

ttr c6c

tni nay.


4.3. Suppose that we have a sample 43. Gia sri ta c6 m6u x1,...,xn vi ta
x1,...,x,1 and we have calculated
dE tinh duo. c Xn vi 5l cho miu
Xn and Sfr for the sample. Now an
niy. B6y gid ta c6 tiiip quan s6t
(n + l)u' observation becomes
th& n + l. Gi6 sri Xnal vi Sl*, U
available. Let fn*1 and Sl*1 be
trung binh miu vi phuong sai
the sample mean and sample
m6u hiQu chinh cho m6u s& dgng
variance for the sample using all
tit ci n + I quan s6t. '
' n*lobservations.
computed using

fn

Xnal

can

be

and xn*1.

- t)Sl +(n(n

+ l))(xn*1


a) Xn+l c6 th6 duo. c tinh nhu th6
ndo khi sri dung Xn vd xn*1?
b) Chi ra

b) Show that nSl*, =

(n

262

l$ch

DS: a) 2,3313; b) 0,6817.

a) Show how

-?i t Jt')

ttQ

cta d& liQu.

aO

b) Dirng c6ng thirc

.

b) Xay dpng d6 th! dang hinh h$p


b) Dirng c6ng thr?c (3.7.12).

a) By using formula (3.7 .6);

+ttZ-7i/J^)

b) Construct a box plot of the data.

plots.

x6c su6t 0,90:

P(Y < x) = tD((x

chuAn m6u.

a) Dirng c6ng thirc (3.7.10);

than 200 cars to lrave entered the
parking lot with probability 0.90:

By using formula

a) Tinh trung binh miu

sample standard deviation.

ph6t l4nh tt6


DS. a) 0,1038; b) 0,0974.

vi

a) Calculate the sample mean and

construct comparative box plots.
Write an interpretation of the
inforrnation that you see in these

3.51. The number of cars entering a 3.5f. 35 xe con tt6n mOt bEi il{u xe c6
parking lot is Poisson distributed
ph6n b5 Poisson v6i vdn t6c 100
with a rate of 100 cars per hour.
xe tr6n gid. Tim thoi gian cAn thiiit
Find the time required for more
d6 c6 qui 200 xe vio bdi tt{u v6i

.b)

an

-Xr)2.

(n

ring

nSfr*, =


- r)Sl +(n(n + l)[xn*1 -Xn)2.


a random
sample of size 2n from a
population denoted by X, and

4.4*. Suppose we have

E(X)=p

and

V(x) =o2 .L"t

E(x)=lr ve V(X)=02.Dit

x,=*It

x,=*I*, and X2 =*fl*,

a

random sample from a population

p

and variance o2.

vi


cria

a _ Xr + X2 +...+

a

estimator

population variance

'

is

_ 4Xl -2X3 + X5

best? In

b) U'6c lugng nio

variance
X2 and

4.6*. Data on pull-off force (pounds) for
connectors used in an automobile
engine application are as follows:
79.3, 75.1, 78.2, 74.1, 73.9, 75.0,
77.6, 77.3, 73.9, 74.6, 75.5, 74.0,
75.9, 72.9, 73.9, 74.2, 79.1, 75.4,

6.3, 7 5.3, 76.2, 7 4.9, 79.0, 7 5.1.
a) Calculate a point estimate of the
7

of

all

connectors in the population. State
which estimator you used and why.
b) Calculate a point estimate of the
separates

the
the

a) Ering; b)

"!

.

Similarly,

Sl ur" the sample mean

and sample adj. variance from

u6c


a

second independent population
with mean p2 and variance ol.
The sample sizes are n,and n2,
respectively.

.

a)

Show that X, - X2 is an
urrbiased estimator of lrt - pz .
b) Find the standard error of
X, - X, . How could you estimate

trit nh6t, theo

nghia nio?

D&

pull-off force value that

li

the standard error?

X be a Bernoulli random
variable. The probability mass


4.8. Let

b) Tinh udc lugng

r(*;p)


cila

mQt

tQch

.DS. a)

i=75,60;

b) fD = 74,28;

.

4.7. Xnva Sfl ta trung binh m6u vd
phuong sai m6u hi€u chinh tir
mQt t6ng th.3 vdi trung binh p

vd phuong sai
X2 va


of.

Tuong tg,

Sl ld trung binh m6u vd

phuong sai m6u higu chinh tir t6ng
th6 d$c l4p thri hai v6i trung binh

p2 vd phuon g sai oj. Kich thu6c
mdu tucrng ring Id n1, n2 ..

a) Chi ra ring X, -

Xz

lugng kh6ng chQch cria pt

-

Id udc
ltz

.

'cfia

b) Tim dO l€ch chu6n
X,-X, . Bgn u6c luqng d9 lQch
chuAn ndy th6 nio?


4.8. Cia sti X ld BNN Bernoulli. Hdrn
kh6i luqng x6c sudt ld:
(

func. is

74,9;78,0;75,1.

a) Tinh udc luqng ctidm ctia lgc
k6o trung binh c0a t6t ci cdc bQ
li6n k5t trong tiing th6. N6i 16 u6c
lugng nio tli sft dgng vi t4i sao.

phuong sai t6ng th6 vn dQ

DS: b)

6r.

4.6*. Lgc k6o cta bQ truydn trong dQng
co 6t6 nhu sau: 79,3; 75,1; 78,2;
74,1; 73,9;75,0; 77,6; 77,3; 73,8;
74,6;75,5; 74,0; 75,9; 72,9; 73,8;
74,2; 78,1; 75,4; 76,3;75,3;76,2;

c) Tinh u6c lugng di€m cta

c) S=1,6967.


a) Phdi chdng c6 hai u6c luqng d€u
li kh6ng chQch?

what sense is best?

mean pull-off force

of

and

population standard deviation.

X6

"z____- 3

a) Is either estimator unbiased?

b) Wrich

the

chuin t6ng thii.

c) Calculate point estimates

"|__-____E--'

a,6

_ Xr + X2 +...+ Xo

264

o2. X6t c6c
p:

phuong sai

ofp:

q
J

.

4.5**. Gia s0'X1, X2,...,X61i miu nglu
nhi€n tir t6ng th6 v6i trung binh p

Consider the following estimators

A
-z

from

4.7. Xn and Sf are the sample mean
and adj. sampte variance from a
population with mean p and


nio ld t6t hon? Giii thich.

lu-o-ng sau

_ 4Xr -2X3 + X5

population

strongest 5002.

vd X, =;lt*,

your choice.

having mean

in tlre

li 2 u6c luo. ng cria p . U'dc lugng

be two estimators of p. Which is
the better estimator of p? Explain

4.5**. Let Xt, X2,..., X6 denote

the weakest'50% of the connectors

4.4*. Gia sft ta c6 mdu ngSu nhi6n kich
thu6c 2n tir t6ng th6 kli hiQu ti X,


=

{0.

('

[0,

-P)'-*'

x = o'l

otlrerwise

p is the parameter to be
estimated. Find the likelihood
where

function and the loglikelihood one
of a randorn sample of size n.

f(x;p) =] n- (r -P)'-*'

[0,

x=

o'l

nguo. c


lai

trong d6 p ld tham sti cAn u6c
lugng. Tim hAm hSp ly vi loga
him hqp lj cira miu ngiu nhi€n
kich thu6c n.

nfra s6 lpc k6o th6p nh6t.

265


DS. pxl+"'+xn(1-p)n, (xi >0);

(xr +... + x, )lnp + nln(l

-p)

.

4.9. In the normal distribution case, the 4.9. Trong trudng hqp phdn bii chuin,
maximum likelihood estimators of
udc lugng hSp ly cyc tlpi cfia p vd

o2 ld

p and o2 were

[ = X and 6.' =


i

i=l

(*,-X)' l^

Find the maximum

likelihood

estimator of the function

r''(u,"2)=

.

lr=X va 6''

=Ii=l

(x,-x)'1 f".

Tim udc lugng hqp lli cgc tl4i cfra
ham

h(r,o2)=,',F=o.

.,f' = o.


I(*,-* f h

4.10**. Transistors have a life that is 4.10**. fu6i thg cria c6c b6ng tldn rtiQn
exponentially distributed with
tri c6 ph6n bii mfi vdi tham sii )'.
parameter 1,. A random sample of
MQt mdu nglu nhi6n kich thuo. c n
' n transistors is taken. What is the
tlugc rtt ra. Tim hdm mflt tlQ joint probability density function
thdi cfia miu.

pg. 1n"_l(x1+...+xn), (xi >0).

4.11*. ASTM Standard E23 defines 4.11*. Ky thu6t CM,l tlo nlng lugng
ndn vi thuong tlugc dirng ili x6c
standard test methods for notched
ttlnh mQt v{t liQu c6 thay aOi ttr
bar impact testing of metallic
d6o sang ddn hay kh6ng khi nhiQt
materials. The Charpy V-notch
(CVN) technique measures impact
tlQ giim ddn. Ph6p do nlng luqng
n6n (J) tr6n nhi1ng miu th6p A238
energy and is often used to
dem cit d 60oC nhu sau: 64,0;
determine whether or not a
material experiences a ductile-to65,0; 64,5; 64,6; 64,5;64,0; 64,6;
brittle transition with decreasing
64,8;vd64,3.

': ndng lugng chlu n6n
temperature. Ten measurements of
Cii sri' idng,
at
.
I
irnpact energy (J) on specimens of
c6 phin b6 chu6n v6i o = lJ. Tim
impact energy (J) on specimens of
khoing tin c$y 95Yo cho p- ning
4238 steel cut near 60oC are as
lugng ch!u n6n trung binh.
follows: 64.0; 65.0; 64.5; 64.6;
64.5: 64.0; 64,6; 64,8; and 64.3.

266

impact energy.

DS: (64,478+0,653).

''n

A confidence interval estimate
is desired for the gain in a circuit

4.12x*.

on a


semiconductor device.

Assume

that gain

4.12**, Ngudi ta mu6n u6c lugng
khoing tin c{y cho clQ suy giim

distributed with standard deviation
o =20.

trong mQt m4ch cria thii5t bi ben
d6n. Gii st} tls suy giim c6 ph6n
bi5 chuAn vbi o :20.
a) Tim khodng tin cQy 90%o cho 1t

a) Find a 90% CI for p

khi n=20,f =1000

is

normally

when

n=20andX=1000.
D^t.


of the sample?

Assume that impact energy is
normally distributed with o = lJ.
Find a 95% Cl for p, the mean

b) Find a
n =10 and

99oh

b) Tim khoing tin cfy 99Yo cho

CI for p

pt

khi n=10,f =1000.
DS: a) (1000 t 7,4);

when

x=1000.

b) (1000+r6,3).

\

4.I3**. n = 50 random samples of water 4.13**. Nguli ta l6y ngiu nhi6n 50 m6u
from a fresh water lake were taken

nu6c tir mOt h6 nu6c s4ch vd dem
and the calcium concentration
ki,3m tra n6ng dQ canxi (mdl).
(milligrams per liter) measured. A
Khoing tin c{y 90% cho n6ng ttQ
90% Cl on the mean calcium
canxitrung binh ld 0,49 < p < 0,82.
concentration is 0.49 < p < 0.82.

a) Khoing tin cfy 99% tfnh tluoc

a) Would a

tt mdu nu6c d6 ld rQng ra hay hgp

99Yo

CI

calculated

from the same sample data been

lei?

longer or shorter?

b) X6t ph6t bi€u sau d6y: CA 90%
. ^. -l
:,

co hQi
tl€ p ndm giiia 0,49 vd 0,82.

b)

Consider

the

following

statement: There is a 90Yo chance

Phdt bi6u

niy c6 iling khdng? Giii

that p is between 0.49 and 0.82. Is

thich cdu

tri ldi cria b4n.

this statement correct? Explain.

c) Xdt ph6t bi6u sau ddy: NCu 6y
ngdu nhi6n 100 miu nu6c tir h6 vd
tinh ra khoing tin cfly 90%o cho 1t,

c)


the following
, statement: If n = 100 random
Consider

sarnples of water from the lake
were taken and the 90% CI on pr
computed, and this process was
repeated 1000 times, 900 of the
CIs will contain the true value of

vd qu6 trinh niy lap lai 1000 lAn
thi c6 cO 900 khoing tin cgy chfa
p. Phrit bi6u ndy c6 dfrng kh6ng?
Giiithich c6u tri loi c[ra ban.

267


p. Is this

statement correct?

.

Explain.

It is knowrr that ring diameter
is normally distributed with
o' = 0.001 rnillirneters. A random

sample of 15 rings has a mean
diarneter of 7 = 74.036 millimeters.

Construct a 99Yo two-sided
corrfidence interval on the mean

a)

piston ring diameter.

Constiuct

a

confidence bound

95%o lower-

on the

mean

piston ring diameter.

life fbr a new

4.14x*. Mgt hlng sdn xu6t vdng gdng
cho tlQng co 6t6. Bi6t ring tluong
kinh vdng c6 ph6n bii chuAn v6i
o:0,001 mm. M6u ngSu nhi6n l5

vdng c6 dudng kinh trung binh

rr.rbber compound

and has built 15 tires and tested
thern to end-of-life in a road test.
The sample mean and standard

deviation are 60139 and 3645
kilometers. Find a 95oZ confidence
interval on mean tire life.

a) Tim khoAng tin c4y hai phia
99Yo cho tlubng kinh vdng gdng
trung binh.

duong kinh vdng ging trung binh.

a95%o confidence interval on mean

current required. State

any

ne-cessary assumptions about the
tunderlyirrg distribution of the data.

268

distributed.


n = l0

ddi h6i tt6 thu dugc mfic sSng ndo

tt6. MQt m6u l0 b6ng cho ta
f =317 vh S=15,5. Tirn khoing
tin cfy 950/o cho ddng trung binh
ddi h6i (mcA). Ph6t bitiu nhtng gid
thi6t cAn thiiSt ve ph6n b6 cta s5
IiQu.

E& (317+lt,t).

A

is

normally
random sample of

4.19**. A company that manufactures
light bulbs has advertised that its
75 watt bulbs burn an average of
800 hours before failing. The
consumer organization must decide

tivi c6 thii

c udc Iuong bdi viQc do dong


n6i

assumption of

cans yields a sample
standard deviation of 5 : 4.8
milligrams. Find a 95% two-sided
confidence interval fsr o.

cao su m6i, 6ng chiS t4o 15 chi6c

du-o.

the

canned peaches

k! su vd liip nghidn cri'u tutii
tho cia lOp d6i v6i mQt h5n hqp

vd 3645 (km). Tim khoing tin c{y

t6ng th6?

4.18. The sugar content of the syrup in

.

vir dem chtng thri nghigm tr6n

dulng cho tli5n h6ng. Trung binh
mdu vi tIQ l€ch chuin m6u h 60139

phAi

interval on mean natural
frbquency. Is there evidence to

d.5n

gin thi6t vd tinh chuin cria

ES: (231,67 +1,46).

nornrality in the population?

4.15. Mgt

4.16. D9 s6ng cfia ddn hinh

90% hai

tp nhi€n trung binh. C6
ld binh thulng hay kh6ng khi

crja tAn s6

Find a 90% two-sided confidence

support


b) Xay dsng bi6n tin c{y du6i
(khoing tin c4y phdi) 95% cho

95Yo cho tu6ithg l6p trung binh.
DSj (60139t2018).

4.16. The brightness of a television
picture tube can be evaluated by
measuring the amount of current
required to achieve a particular
brightness level. A sarnple of I0
tubes results in X=317
and 3 =15.5. Find (in microamps)

natural

229.48,232.58

mm.

DS: (74,0361 0,0007); 7 4,0356

A

researclr engineer for a tire
rnanufacturer is irrvestigating tire

4.15.


E

f=74,036

on the

delamination

c) Dirng.

4.14**. A manufacturer produces piston
rings for an automobile engine.

b)

of 4.17*. MQt tac gih m6 ti hiQu (mg c0a
sg phAn lnp l6n tin s6 tg nhi6n cta
frequency of beams made from
chim tia sinh ra tt nhirng bin
composite laminates. Five such
composit. NIm chilm nhu th6 du'o. c
delaminated beams were subjected
thu thdp vi tin s6 thu dugc tuong
to loads. and the resulting
ring nhu sau (Hz): 230,66;233,05;
frequencies were as follows (in
232,5 8 ; 229,48 ; 232,5 8.
hertz): 230.66, 233.05, 232.58,
Tim khodng tin cfy
phfa


4.17*. An article describes the effect

DS. a) RQngra; b) Kh6ngi

whether or not to allocate some

of

its financial resources to
. countering the company's
'

advertising campaign. So tlrat it
can make an informed decision, it

begins by purchasing and testing
100 of the disputed light bulbs. In
this experiment, the l00light bulbs
burned an average of X=745.1
hours before failing, with a sample

4.18. Lugng tlucrng cria sir6 trong
nhtng chi6c can c6 ph6n b5 chu6n.
Miu nglu nhi6n n : l0 can cho ra
d0 lQch chuAn 5 . = 4,8 mg. Tim
khoing tin cay hai phia 95%o
cho

o.


E&

(3,30;8,76).

ts

4.19**. MQt c6ng ty sin xu6t b6ng
tldn tld quing crio rdng b6ng tti€n
75W cria h9 tl6t sring trung binh
800 gio trudc khi h6ng. T6 chric
nhitng nguli ti€u dirng cAn phii
quyiit Ainn xem c6 ph4t tiBn li€n
quan ittin chi6n dlch quing c6o cria
cdng ty hay kh6ng. Vi thi5 h9 quy6t
ttinh rrit ng6u nhi6n vi ki6m tra
100 b6ng tldn khiiSu kiQn. V6i thi
nghipm niy, 100 b6ng rldn s6ng
trung binh *.=745,1 gid tru6c khi
ch6y v6i dO lgch chuAn m6u
s = 238,0 gio. Ph6t bi6u gi6 thuy6t
vn d6i thuy6t phir hqp cho tinh
269


of s = 238.0
hours. Formulate null and

. hu5ng ndy. Tinh x6c su6t f nghTa.
Phdi chlng k€t qui ndy tl6m bio

b6c b6 gii thuyiSt tai mirc f nghia
a = 0,05?
DS:2,13=zo,olll

standard deviation

alternative hypotheses that are
appropriate for this situation.

Calculate a
probability.

significance

Do

these results
warrant rejecting the null
hypothesis at a significance level
of

cr

P- gi6

'{

DS:28022.

suspension helmets used by

motorcycle riders and automobile
riders and automobile race-car
. drivers was subjected to an impact
test, and on 18 of these helmets

m6y ttinh chi lutr hdnh ttuqc dA
ngh! ki6m tra ch6t luqng vi th6y

some damage was observed.

a) Find a 95Yo two-sided CI
(confidence interval) on the true
proportion of helmets of this type
that would show damage from this.
b) Using the point estimate of p
obtained from the preliminary
sample of 50 hemets, how many
helmets must be tested to be 95%
confident that the eror in
estimating the true value of p is

c6 l8 chiiSc c6 nhiing hu hai.

a) Tim khoang tin cfy hai phia
95Yo ciuatj l€ thuc cta s6 mfi d4ng
niy s6 b! hu h4i sau cuQc kirSm tra.
b) Sri dpng u6c tugng di6m cta p
thu duo. c tir mdu 50 mii n6i tr6n,
bao nhi€u mfi cin phii tluqc kiiim
tra d3 vdi tlQ tin cfly 95%, sai sii

trong udc luqng gi6 tri thg"c cfia p

=I!--f)'

if it

is required to

days, and the average temperature

zo12=2213.

.

p vd tlQ lQch chuin I m6t. CAn phii
tiiln hdnh bao nhi6u ph6p tto niSu
mu6n x6y dyng mQt khoing tin
cQy mfc 90Yo cho p v6i dq r$ng
20cm?

DS:270.

is found to be 98oF.

a) Nhi€t tlQ nudc sC duo. c chip
nhfn vdi mrlc cr = 0,05 li bao

a) Should the water temperature be

nhi6u?


judged acceptable with o = 0.05?

b) P-gi6 tri cho ki6m dinh niy

b) What is the P-value for this test?

bao nhi6u?

c)

G0

Repeat

b) for the average

temperature l02oF.

4.22. Ngu&i ta nghi6n criu t! lQ c6c
integrated circuits produced in a
mech tich phin h6ng trong qu6
: trinh in inh lit6. Ki6m tra mdu 300
photolithography process in being
m4ch thi th6y c6 14 mach b! h6ng.
studied. A random sample of 300
circuits is tested, revealing 14
Tim khoing tin cfy hai phia 95%

Nguli ta quy6t dlnh ding m6y do


4.24*, The mean water temperature 4.24*. Nhiet tlQ nu6c trung binh t& 6ng
downstream from a power plant
xi th6p l4nh nhd m6y nhiQr di$n
cooling tower discharge pipe
kh6ng n6n vugt qu5 l00oF. Tru6c
should be no more than l00oF.
kia nguli ta th6y ring tlQ lEch
Past experience has indicated that
chuAn cria nhict d0 nu6c ld 2oF.
the standard deviation of temperature
NhiQt dO nudc dugc tlo nglu nhi6n
in 2oF. The water temperature is
9 lin 6 m$t ngiy chsn sin vi th6y
measured on nine randomly chosen
ring nhiQt dQ trung binh li 98oF.

less than 0.02?

defective

bi h6ng bdi

logi ndy.

dg cao laze d6 tto chi€u cao p cria
nggn nfi cao nh6t trong virng. Bi6t
J,
ring c6c phdp do dilng m6y tlo tlQ
cao laze c6 gi6 tr! trung binh bing


laser

20 centirneters?

a) (0,36t0,133);
u1 n

by the

construct a 0.90-level confidence
interval for p that has a length of

nh6 hon 0,02.
D^Si

4.23*.

of the highest mountain in the
country. It is known that
altimeter have an expected value
equal to p and a standard deviation
of I meter. How many measurements

19 c6c mach

c1r

D.Sj (141300 t0,024).


measure the height p

should be made

4.il**, Miu ng6u nhi€n 50 chiiSc mfi xe

270

to

measurements made

A' random sample of

4;22. The fraction of

ft is decided to use a laser

altimeter

: 0.05?

50

.

c0ng

4.23r'.


4.20. Consider the tire life data in 4.20.Xet sii tiou tu6i thq l6p trong Bii
Exercise 4.15. Find a 95%o lower
tfp 4.15. Tim gi6i han tin c{y.dudi
confidence bound for o2 .
95%ocho o2.

4.21**.

cia

CI on the fraction of

defective
circuits produced by this particular
tool.

tri = 0,01 l; dring.

tj

defectives. Find a 95% two-sided

4.23. A

"

li

c) L{p lei b) khi nhiQt tlQ trung


'binh

li

120T.

manufacturer produces
crankshafts for an automobile
engine. The wear ofthe crankshaft

lds:u}t nhi miy sin xu6t trpc truy6n
.) tlQng cho tl$ng co 6t6. Ngudi ta tlii
Lr
t-dil itQ mdn (0,0001 inch) cia

after 100 000 miles (0.0001 inch)
is of interest because it is likely to

tryc khuj,u sau 100 000 d{m, bdi vi

tl6 tlugc xem

li

tli€u quy6t dinh
271


have


an impact on warranty

'.

claims. A random sample of n = l5
shafts is tested and f = 2.78 . It is

knowrr that o = 0.9 and that wear
is normally distributed.

mdn c6 phdn bi5 chudn.

a**) Hly

a**) Test
Hs

:

lt=3.25?

4.26. The rainfall in acre-feet from 20

clouds that were selected at
random and seeded with silver
nitrate follows: I8.0, 30.7, 19.8,
27.1, 22.3, l g.g, 3 l.g, 23.4, 21.2,
27 .9, 3 I .g , 27 .1 , 25 .0, 24.7 , 26.9,
2l .9, 29.2, 34.9, 26.7, 3 1.6.


a**) Can you support a claim that
mean rainfall from seeded clouds
exceeds 25 acre-feet? Use cr = 0.05.

b*) In there evidence that rainfall
is normally distributed?

:p;r 3 (cr= 0,05). .

b) Tim sric mpnh cta ki6m ttinh
n6u P =3,25.

if

V

HD: a) lZl=O,gql <2o12
.=1,96;
b) P=0,35, F=l-0,35

4.1,6. Luqng mua (don

vi miu -

bu6c,

kho6ng t233m3; ctta20 tl6m m6y

dugc chgn ngiu nhi6n


'

vi

c6 sri
dsng ch6t k6t hat nitrat b4c Ii
18,0; 30,7; 19,8; 27,1; 22,3; 18,8;
31,8; 23,4; 21,2; 27,9; 31,9; 27,1;
25,0; 24.7; 26,9; 21,8; 29,2; 34,8;
26,7;31,6.

@

c6 th6 chdP nhfln khing
2u"
dlnh rdng, lugng mua trung binh tir
cdc d6m mdy c6 srl dgng c6c ch6t

if

the true mean rainfall is 27 acre-feet.

manufacturer

of

272

not


exceed 2%.

a)

Formulate

and test

qualified. Use

cr:

an

,&
a) Hs:p=0,02 / H,:p >0,02;

b) Find the P - value for the test in

b) Z = 0,452 =

parr (a).

used in a jet-turbine aircraft engine

is a random variable with

x6c dlnh

du_o.


b) Tim P - gi6 tri.

0.05.

4.28. The effective life of a component


c tl6nh gi6 ld tlat ch6t
Iugng hay kh6ng (l6y o:0,05).
m6y c6

z03z6

*

p = 0,326

.

4.28. Tu6i thg hiQu dsng cira mQt b0
phfln s& dpng trong tlQng co m6y

5000 hours and standard deviation

bay turbin phAn lgc ld BNN vdi
trung binh 5000 gicr vd tlQ lQch

40 hours. The distribution of


chuAn 40 gid. Phdn b5 cria tu6i thq

mean

life is fairly close to a
nonnal distribution. The engine
effective

hi€u dung i6t gAn v6i ph6n bri

manufacturer introduces

chuin. Nhd s6n su6t giOi thiQu mgt
sg cii ti6n tron! qu6 trinh sin su6t

improvement

into

an

thiiSt

the

b! niy mi d6 n6ng tu6i thq
vi giim d0

manufacturing process


for this
component that increases the mean

trung binh I6n 5050 gid

lQch chu6n xudng cdn 30 gio. Gi6

coi lugng mua tir c6c tl6m miy

frdrn the "old" process and a
random sample of nz =25

Tim xdc sudt d6 sg kh6c biiit gita
hai t4rng binh m5u it nhdt ld 25

dirng chdt kiit hat c6 phin h5 chu6n?

components

hay

!b)'C6 li

binh thuong khdng khi ta

li

27.


vugt qu6 2%.Mdu ng6u nhi€n 250
kinh chria 6 kinh h6ng.

nr

=16

b0

tt

l6

Yi2r**. MQt hiing sin xu6t kfnh li6n
lenses is qualifling a new grinding
trdng muSn tt6nh gi5 ch6t luqng
machine and will qualiry the
m6y mii mdi vd s€ chdp nhfn ch6t
machine if the percentage of
Iusng cria m6y ni5u fi le l6i kh6ng

defects does

a) Ph6t birSu gin thuy6t

contains six defective lenses.

quy trinh sin
.ph$n tlugc chgn
su6t cfi vd mdu ngAu nhi6n nz=25


kiit het vuqt qria 25 ikrn vi

interocular

polished lenses that contain surface

lenses

life to 5050 hours and decreases

trung binh

A

of 250

the standard deviation to 30 hours.
Suppose that a random sample of
nr =
components is selected

c) Tim s&c m4nh c0a ki6m dlnh
ni5u gi6 tr! thgc cria lugng mua
4.27**.

randorn sample

sri miu ngdu nh.i6n.


kh6ng?

c) Compute the power of the test

A

appropriate set of hypotheses to
determine if the machine can be

kiiSm dlnh

H9 : p = 3711,

p=3/H1 :p*3 (u=0.05).

b) What is the power of this test

cho sp b6o hinh. M6u ngiu nhi6n
15 trgc tluo. c kiiSm tra vi th6y
*.=2,78. Bi6t ring o = 0,9 vd d0

b9 phAn chgn

is

tt

quy trinh

cii


tirin.

selected from the
"improved" process. What is the

gio. Gi6 sri ring, quy'trinh sin xu6t
cfi vd quy trinh cii ti6n c6 th6 xem

probability that the difference in
the two sample means X, - X, i9

nhu ld nhfing t6ng thti ttQc lAp.

at least 25 hours? Assume that the
old and improved proc'esses can be

HD:

regarded as

-N(50 ; +02 tt6+lo2 tzs1;

independent

Z=X-Y

P=P(zl>zs).

populations.


'

D&

0,9938.

273


4.29,"'. A consumer
company

is

electronics

comparing

for use in

tri gia

dr,rng so s6nh

of

nhau sir dpng trong m6y thu hinh.

its


Lo4i b6ng A c6 tlQ s6ng trung binh
100 vi d0 lOch chuAn l6; trong khi
d6 logi b6ng B c6 c6 tlQ sdng trung
binh chua bi6i, nhung c6 th6 coi c6
tlQ lQch chuAn gi6ng nhu cria lo4i
A. Miu ng6u nhi6n n : 20 b6ng
mdi loai duqc rtt ra vi tinh

A has
100 and

of
standard deviation of

ttiQn

dQ s6ng cria hai lo4i tldn hinh kh6c

television sets. Tube type

mean brightness

t. Hing

the

brightness of two different types

picture tubes


4-)pt

4.31*. The burning rates of two 4.31*. Nguoi ta nghidn criu vfn t6c
different solid-fuel propellants
ch6y cta 2 bq .fAy dirng nhi6n liQu
used in aircrew escape systems are
rin trong hQ th5ng tho6t hi6m cho
being studied. It is known that both
propellants have approximately the
same standar.d deviation of burning

16, while
tube type B has unknown mean
brightness, but the standard
deviation is assumed to be
identical to that for type A. A
random sample of n = 20 tubes of
each type is selected, and Xs; X^
is compr:ted. If pe exceeds p4,

nhi s6n su6t sc chgn loei B tlem sti
dpng. Sg kh6c bi€t quan s6t tluo. c
le fa-fe =3,5. B?n sC dirng

the manufacturer would like to

quyiSt dinh ndo vd t4i sao?

adopt type B for use. The observed


a) Test the hypothesis that both
propellants have the same mean

HD:

burning rate. Use o = 0.05.

rate; that

is fs -X^ =3.5. What
decision wouid you make, and

z

=

for use by an

electronics

component manufacturer. The
breaking strength of this plastic is
important. It is known that
ol =o2 =l'0 psi. From a random
sample of size n1 = l0 and fr2=12 ,
we obtain

ir


The company

I

=163 and

x,

=155.

will not adopt plastic

unless its mean breaking strength

exceeds that ofplastic 2 by at least

.
.

l0 . psi. Based on the

sample

information, should it use plastic
I ? Use cr = 0.05 in reaching a
decision.

cm/s. Hai mdu ngiu nhi6n kich

per second. Two random samples

of n1 = 20 and nZ =20 specimens

n2=20 ttuqcki6m
tra, v$n t6c ch6y trung binh Id
*l = l8 vi f2 = 24 cm/s.

b) What is the P-value of the test in
parta)?

b6c b6 khi

c)

Construct a 95Yo confidence
interval on the difference in means

\.

4.30**. Two types of plastic are suitable

centimeters

centimeters per second and
72 =24 centimeters per second.

(x -Y) t thaz t zo + 162 t 20 ;

-N(O;l), gi6 thuytit bi
vi chi khi Z> ro.os.


why?

=3

are tested; the sample mean
burning rates are El = I 8

Xs;Xa. Ntiu ps vugt qu6 pa,

difference

is o1 = 62

D& Kh6ng.
4.30*t. MQt c6ng ty thi6t b! di€n

Itl

nh$n

- rt2. What is the

practical

meaning of this interval?

th6y c6 th6 dirng ttugc 2 d4ng chSt
d6o. Sric b6n chiu va ttfp li quan

1,0 Psi. T& mdu ngdu

nhi6n kich thudc nl =10 vi
nZ=12 ngudi ta nhfln dugc
Xl =163 vit x2 =155. C6ng ty sE
kh6ng chgn chSt d6o I trir khi sric

quyiit ttlnh.

DS:

2=-4,67 <-1,645;

kh6ng.

t6c chdy trung binh.

b) P - gi6 tr! cria ki6m dinh d
phin a) li bao nhi€u?
c) Xdy dgng kho6ng tin cQay 95Yo
cria sU kh6c biet trung binh
nghTa thr.rc t6 cria
It1 - pZ. f
khoing niy

li

gi?

D& a) lZl=6,lZq=zo.Mt2

b)P-gi6tri =9,696'

G -Y tzol2lo!

r

t n1 +

ol / n2)

1,959).

432*r'. Two chemical companies can +Yz**. Hai hiing hod chdt c6 th6 cung
supply a raw material. The
c6p nguy€n li€u th6. N6ng ttQ cfia
concentration of a particular
lo4i ch6t ndo tl6 trong nguy6n liQu

element

in

material is
important. The mean the same,

*

this

ln di6u quan treng. NOng ttQ trung

concentration for both suppliers.is


but we suspect that the variability

hai nhi cung cdp ld
nhu nhau,' nhrmg. chtng ta ngpi
ring ss b6t 6n tlinh vd n6ng dQ c6

in a

random sample of size
nl =10 and n2=12, we obtain

thi! lA kh6c nhau vdi hai nhd cung

between the two companies. The

trong m6u ngSu nhi6n

standard deviation of concentration

274

a) Kii-lm tlinh gi6 thuy6t (cr = 0,05)
ring ci 2 hQ thiSng tISy c6 ctng vfn

= (6

bAn chlu va tffip cria n6 trQi hon so

v6i cria chdt d6o 2 it nh6t l0 psi.

Dga tr6n th6ng tin vO m6u, phii
chlng ch6t I s€ dugc dem vio sri
dgng? Dirng cr = 0,05 d6 dua ra

thu6c n1 =20,

c)

trqng. Ngudi ta bilit ring
Gl = 02 =

phi c6ng. ni6t ring c6 hai bQ rt6y
c6 ttQ l€ch chuin cria vfn ttic ch6y
gin nhu nhau, d6 ld o1 = a1=i

binh cria

ci

c6p. DQ lQch chu6n

cia

n6ng

ttQ

l0

16 sin

xu6t Uoi hiing ttu? nhdt ta s1 = 4,7 gll;

275


in a random sample of
= l0 batches produced by
company I is s1 = 4.7 grams per

nl

s2

=5,8 dl. C6 ttri ch&ng c6 d6

liter, while for company 2, a
random sample of n2 =16

th6 ld khec nhau?

batches yields s2 =

D& Kh6ng:

5.8 grams per

liter. Is there sufficient evidence to
conclude that the two population
variances differ? Use


manufacturing interocular

lenses

used in the human eye following

cataract surgery. Three hundred
lenses were tumble-polished using

the first polishing solution, and of
this number 253 had no polishing-

induced defects. Another

300

lenses were tumble-polished using

the second polishing solution, and
196 lenses were satisfactory upon

completion. Is there any reason to

believe that the two. polishing
solutions differ? Use cr

=

0.01.


Discnss how this question could be

ffiered with a
interval on pl

kiSt luQn

ring hai phuong sai tiing

(f6.e75(1

(cr:

0,05).

5;9) < fs,e5(l 5;9) < F

= 1,523 < f6.e, (l 5;9) < f6,62,

(1

5;9))

cr:0.05.

4.33*. Two different types of
polishing . solution are being
evaluated for possible use in a
tumble-polish operation for


4.33*. Hai d4ng kh6c nhau cria
ch6t b6i tron dugc xem x6t d,i
ding cho m6 thay thui tinh th6.
300 thu! tinh th6 dirng ch6t b6i
tron tht nhdt vi trong s,i5 d6 253
kh6ng c6 tryc trfc gi. 300 thuj'tinh

th6 tin ring hai chAt b6i tron ld
kh6c nhau hay kh6ng vdi mtc f
nghTa cr : 0,01 . Xdt xem vfn d6
.
, ..,1 .,.
t
niy
c6 th6 gi6i quy6t du-o. c th6ng
qua khoing tin cfly cta p1 - p2 .

lzl=

lr,

Itt

-Il(t

I n1+t I n2)

.

average weight loss


of at

least

3

ligu suy gi6m trgng luqng ghi lai 6
<16y. Sir dgng thrh tuc
gi6
ki6m dlnh
thuy(5t d6 tra ldi ceu

a) Do the data support the claim of
the producer ofthe dietary product

a) Phni chdng sii ligu ln phi hgp
v6i khing tllnh cria nhi sdn xu6t

with the probability of a type I

,
T.
' pnam
'I
gram Deo vor xac suat sal
san

error set to 0.05?


lAm lo4i I bing 0,05.

b) In an effort to improve sales, the

b) Trong mQt n5 lUc tt6 ndng cao
mric ti€u thg, nhh sin xu6t xem xdt
loi dim bio cfia hg tir "it nh6t :
pound" thinh "it nh6t S pound".
Ki,5m tlinh ldi tl6m bio m6i.

4.34**. Ngu&i ta quing c6o cho mQt sin
phim gi6m b6o dang l6ng ring st
dqng sin phim trong vdng 1 thring
eey ra gi6m trgng lugng it nh6t 3

phAm ndy trong vdng

I

th6ng vd s6

bing du6i
h6i sau:

1

165

161


5'

155

150

2

201

195

6

143

141

3

195

192

7

150

146


4

198

193

I

187

183

HD: a)

Tu =2,565 >

-t6.65(8- l)

;

thing.

D

d t?-( fo=ffil8
=-0,6982

> -to.os (8 - l) ; tiling.
/ \)
4.35**. Let X denote the number of 4.35**. Gqi X lA s6 v6t nut quan s6t

flaws observed on a large coil of
duqc t.en mQt cuQn l6n th6p ma.

galvanized steel. Seventy-fi ve coils

,

-p2.

product for one month results in an

resulting weight loss data are
reported below. Use hypothesistesting procedures to answer the
following questions

-El

=5,362>2,58=zop
C6; 0 * (0,19t 0,09)

pound. T{m ttdi tugng sri dpng s6n

claim.

vd th6y c6 196 tt4t y6u cAu. LiQu c6

DS:

pounds. Eight subjects use the
product for one month, and the


producer is considering changing
its claim from "at least 3 pounds"
to "at least 5 pounds". Test the new

th6 kh6c dirng ch6t b6i tron thri hai

confidence

4.34**. A liquid dietary product implies
its advertising that use of the

276

khi d6 vdi hdng thri hai, mdu
ngiu nhi6n n2 =lf 16 cho ra

r trong

are inspected and the following
data were observed for the values
of X:

Values (gia tri)

1

2

3


4

5

6

7

I

1

11

I

13

11

12

10

I

Obs. Frequency
(tAn s6)


75 cuQn tld dugc kh6o s6t vi thu
ttugc sti liQu sau v6 c6c gi6 tri
cria X:

277


a)

Does the assumption

Poisson

of

. a) Ph6i chlng gii thuy6t ring

the

distribution

ph6n br5 Poisson ld m6 hinh x6c

appropriate as a probability model

su6t cho s5 ligu

for this data? Use a

c6


:

0.05.

b) Calculate the P-value for this test.

niy

b) Tinh P - gi6 tri cho ki6m dlnh
nay.

HD: a) 7'= 4,907,9h8p lai;

(n,-nP,)'

=f

i]i

nPi

A

B

c

D


1

41

20

11

16

2

31

12

I

15

3

15

11

15

11


xem nhu ld

lj? Dirng cr:0,05.

b)xz

Machines (m6y)
Shift (ca)

Test the hypothesis (using o = 0.05)
that breakdowns are independent of
the shift. Find the P - value for this

=6,63
:


test.

f i5* tra eie thuyiSt (dnng

|
I
I
I

= 0,05) ring sli IAn h6ng h6c ld
UO: l{p v6i ca. Tim P - gi6 tr! cho
cr


ki6m tllnh niy.

X as the number of

4.36. Gqi X ld s5 chai tt6ng thi6u trong

a filling

operation in a carton of 24 bottles.

24 chai.75 thtng du_o. c
ki,3m tra ve si5 lipu sau dugc ghi

X2 = 9,532

Sixty cartons are inspected and the

lei:

9,532=af,.1ao(6)=+ P = 0,146.

4.36. Define

underfilled bottles from

following observations on

X


HD:

mQt thirng

< Xt,osQ.3) = 12,592

are

'recorded:

Values
Frequency

0
39

2

1

23

3

Gia tri

0

1


2

3

lan so

39

23

12

1

$6.s.nAr

a) Dga vio 75 quan s6t ndy, phii
12

1

ching ph6n b6 nhi th&c li

m6

hinh c6 th€ ch6p nhQn tiugc? Tgo

a) Based orr these 75 observations is

ra mQt tht tqc ki€m ttinh pht


a birromial

distribution an
appropriate model? Perform a

v6i

goodness-of-fit procedure with

b) Tinh P - gi6 tr!.

ho.

p

cl = 0,05.

o = 0.05.
b) Calculate the P-value for this test.

4.37**.

A

>*

breakdowns are collected:

278


cHuoNG

v

IIdi quy tuy6n tfnh tlon
5.1*. Roadway surface temperature (.r) 5.1*. Nhiet tIQ mat tlulng (x) tlugc coi
ln li6n quan d6n d0 bitin dang b6
is thought to be related to
mat O).sii tlCu t6m tit Ii
pavernent deflection (y). Summary
Simple Linear Regression

quantities were

Iy, = tz,ts,lv? =8,86,

Iy, = tz,ls,\v? =8,86,
I*,= A78, lx! =143215.8

I*,=1a78,

f

xf =143215,8

I*,Y,=1083'67 'n:20'

I*,Y,
'n=20'

a) Calculate the least squares
' estimates of the slope and

a) Tinh u6c lugng binh phuong
cgc ti6u cria hQ siS g6c vi hQ sti

intercept. Craph the regression

b) Dnng phuong trinh tlucrng h6i

=1083'67

company operates four 4.37**. MQt hdng sri dpng 4 :nlrhy 3 ca
m5i ngiy. Tir nh{t kf sin xu5t, dir
From production records, the
lipu sau vd s5 su c6 du-o. c thu
following data on the number of
thfp:
machines three shifts each day.

r4r

line.

b) Use the equation of the fitted
line to predict what pavement

chfln. Lflp ad th! Auone h6i quy.

,


quy udc lugng a6 au uao d0 bi6n
d4ng mflt tluong s6 quan s6t dugc
n6u nhiQt tl$ b6 mat le 85oF.

279


deflection would be observed when
the surface temperature is 85oF.

c) What is the mean pavement
deflection when the surface
temperature is 90oF?

b) Use the equation of the fiUed
line to predict what percent yield
would be observed wlren the

c) DQ bii5n @ng b6 m{t trung binh
ra sao khi nhiet dq bA m6t te 90oF?
d) D0 bitin dang bd m{t trung binh
biiin dOi cO bao nhi€u khi nhiQt d0
bC mat UitSn a6i tof'z

temperature is 1600.

c) What is the mean percent yield

d) What change in mean pavement

deflection would be expected for a
loF change in surface temperature?

Find

c) HiQu su6t trung binh bing bao
nhi6u khi nhi€t d0 ld l70o?

d) Find the estimate of o2

d) Tim u6c lugng cria s2.

.

D& a) Y =-4,473+0,496x+e;

linear regression 5.2. Tim MHHQ tuytin tinh don cho s6
model to the oxygen purity data in
Iieu d0 s4ch oxy d B6ng 5.1; ki6m
Table 5.1; test for significance of
tllrrh 1i nghla cfra vi_6c dirng

b)74,95%; c)79,9\Yo;

d)62=11,98.
5.4* . The

MHHQ.

,,S; Y = 7 4,284 + 1 4,947 x + e;


Consider the following
pairs (x;,y1

), i =

l0

data

1,..., 10, relating

y, the percent yield of a laboratory
experiment, to x, the temperature at
which the experirnent was run.

fiber is stored in a location without

(xi,yi), i = I,...,

content (y) of a sample of the raw

l0 li6n h€ bi6n y, hiQu su6t (%) cta
mQt thi nghiQm v6i x, nhiQt tlQ t4i

material were taken over 15 days
with the following data (in

tl6 thi nghi€m thgc hiQn.


percentages) resulting.

5.3. Xet I0 c{p

st5

tieu

X1

Yi

1

100

45

2

110

52

7

160

3


120

54

I

170

76

4

130

63

o

180

92

a)

ua
Calculate

62

the least squares


estimates of the slope and intercept.
Graph the regression line.

6

10

X1

Vi

150

68

190

a) Tim udc lugng binh phuong cuc

vi hC s6 nhqn.
Lap d6 thi cfra tlud'ng hOi quy.

tii3u cria h€ sti g6c

kho l5 ngdy th6 hipn d bdng sau.

X

46


53

29

61

36

39

47

49

v

12

15

7

17

10

11

11


12

x

52

38

55

32

57

54

44

v

14

o

16

I

18


14

12

75

88

noi kh6ng c6 ki6m so6t d9 Am. D0
6m tuong a5l 1xy d ncri luu kho vi
d0 6m (y) cia m6u v{t tiQu th6 luu

a humidity control. Measurements
of the relative humidity (x) in the
storage location and the noisture

(l 9); c6.

i

5

280

16,625

raw material used in the 5.4*. Vat liQu th6 dtrng tlti sin xuAt m6t
of a certain synthetic
lo4i sgi hfru co duo.rc c5t vio kho 6.


production

ltrl=ffi=n,78e
> 2,093 =

sdt dugc sE bing bao nhi6u khi
nhi6t ttQ la 1600.

when the ternperature is l70o?

a simple

regression using the model.

b) Dirng phuong trinh h6i quy thuc
nghi€m a6 ag Uao hiQu sudt quan

Find the mean square

estimate.

I

I

I

rl


ti,

u6c

luo.

ng binh phuong cgc

tieu.

,Sry

=134,517 +147,600x+e;

rrlt.-. ,l:::1 ,"

5.5**. An article in the rournar
sound and vibration described a

I
I
rroise exposure and I

thanh

vi

tr6n rap chi Am
Dao dQng m6 ta mQt


study investigating the relationship

nghi€n criu vA m6i quan

between

luc ti6ns 6n

vi

hQ

gifra 6p

su gia
eia tlng
tlns huy6t
huv6t
281


×