Bài 3
GV: LÊ VĂN QUANG
CHÀO MỪNG QUÍ THẦY CÔ GIÁO VÀ CÁC EM HỌC SINH
TRƯỜNG THPT PHƯỚC LONG
GV:Lê Văn Quang
Niu Tơn Pascal
Tiết 27: NHỊ THỨC NIU – TƠN
Kiểm tra kiến thức cũ:
-
Hãy nhắc lại công thức sau:
-
Hãy nhắc lại 2 tính chất của các số
k
n
C
k
n
C =
( )
n!
k! n k !−
k n k
n n
C C
−
=
k 1 k k
n 1 n 1 n
C C C
−
− −
+ =
KIẾN THỨC CŨ:
k
n
C =
( )
n!
k! n k !−
k n k
n n
C C
−
=
k 1 k k
n 1 n 1 n
C C C
−
− −
+ =
KIẾN THỨC CŨ:
k
n
C =
( )
n!
k! n k !−
k n k
n n
C C
−
=
k 1 k k
n 1 n 1 n
C C C
−
− −
+ =
Áp dụng công thức, Hãy tính:
0
2 2
?
C C ?= =
0
3 3
?
C C ?= =
1
3 3
?
C C ?= =
0 2
2 2
C C 1= =
0 3
3 3
C C 1= =
1 2
3 3
C C 3= =
KIẾN THỨC CŨ:
k
n
C =
( )
n!
k! n k !−
k n k
n n
C C
−
=
k 1 k k
n 1 n 1 n
C C C
−
− −
+ =
0 2
2 2
C C 1= =
0 3
3 3
C C 1= =
1 2
3 3
C C 3= =
Nhắc lại các khai triển sau đây:
( )
( )
2
3
a b
a b
+ =
+ =
2 2
a 2ab b
+ +
3 2 2 3
a 3a b 3ab b
+ + +
0 2 1 1 1 2 2
2 2 2
C a C a b C b
= + +
0 3 1 2 1 2 1 2 3 3
3 3 3 3
C a C a b C a b C b
= + + +
(CT nầy được gọi là công thức Nhị thức Niu – Tơn)
( )
n
a b
+ =
0 n 1 n 1 k n k k n 1 n 1 n n
n n n n n
C a C a b ... C a b ... C ab C b
− − − −
+ + + + + +
TỔNG QUÁT
0 4 1 3 2 2 2 3 3 4 4
4 4 4 4 4
C a C a b C a b C ab C b
= + + + +
( )
4
a b
+ =
4 3 2 2 3 4
4 6 4a a b a b ab b
+ + + +
Tương tự
I. Công thức Nhị thức Niu – Tơn:
( )
n
a b+ =
0
n
C
n
a
+
1
n
C
n 1
a
−
b
+
...
+ + +
k
n
C
n k
a
−
k
b ...
n 1
n
C
−
a
n 1
b
−
+
n
n
C
n
b
(1)
Chú ý:
Trong biểu thức ở vế phải của công thức (1):
- Số các hạng tử là n + 1
-
Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì
bằng nhau
Có bao nhiêu hạng tử trong khai triển
Hãy nhận xét số mũ của a
Hãy nhận xét số mũ của bSố mũ của b tăng dần từ 0 đến n
-
Các hạng tử có số mũ của a giảm dần từ n đến 0
Hãy nhận xét tổng số mũ của a và b trong mỗi hạng tử
Tổng số mũ của a và b trong mỗi hạng tử luôn bằng n
0 0
a b 1)
= =
Hãy nhận xét các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối
( )
n
a b+ =
0
n
C
n
a
+
1
n
C
n 1
a
−
b
+
...
+ + +
k
n
C
n k
a
−
k
b ...
n 1
n
C
−
a
n 1
b
−
+
n
n
C
n
b
(1)
I. Công thức Nhị thức Niu – Tơn:
Số hạng gọi là số hạng tổng quát của khai triển hay gọi
số hạng thứ k+1 của khai triển. Ta có công thức tính số hạng thứ
k+1:
k n k k
n
C a b
−
Ta có công thức nhị thức Niu Tơn thu gọn:
( )
n
n
k n k k
n
k 0
a b C a b
−
=
+ =
∑
(a - b)
n
= [a + (-b) ]
n
Chú ý
1
k n k k
k n
T C a b
−
+
=
ÁP DỤNG:
Ví dụ1:Hãy khai triển biểu thức
( )
6
x y+
Đáp án:
( )
6
0 6 1 5 2 4 2 3 3 3 4 2 4 5 5 6 6
6 6 6 6 6 6 6
6 5 4 2 3 3 2 4 5 6
x y C x C x y C x y C x y C x y C xy C y
x 6x y 15x y 20x y 15x y 6xy y
+ = + + + + + +
= + + + + + +
(Hoạt động nhóm)
CASIO
Ví dụ 2: Khai triển biểu thức (2x – 3 )
4
( xem sgk )
( )
4
0 4 1 3 2 2 2 3 3 4 4
4 4 4 4 4
2 3 (2 ) (2 ) ( 3) (2 ) ( 3) (2 ) ( 3) ( 3)x C x C x C x C x C− = + − + − + − + −
4 3 2
16 96 216 216 81x x x x= − + − +