Tải bản đầy đủ (.pdf) (22 trang)

Đa thức và hàm hữu tỷ

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (203.42 KB, 22 trang )

Chu
.
o
.
ng 2
D
-
ath´u
.
cv`ah`amh˜u
.
uty

2.1 D
-
ath´u
.
c ..................... 44
2.1.1 D
-
ath´u
.
c trˆen tru
.
`o
.
ng sˆo
´
ph´u
.
c C ....... 45


2.1.2 D
-
ath´u
.
c trˆen tru
.
`o
.
ng sˆo
´
thu
.
.
c R ....... 46
2.2 Phˆan th´u
.
ch˜u
.
uty

............... 55
2.1 D
-
ath´u
.
c
Dath´u
.
cmˆo
.

tbiˆe
´
nv´o
.
ihˆe
.
sˆo
´
thuˆo
.
c tru
.
`o
.
ng sˆo
´
P d
u
.
o
.
.
cbiˆe

udiˆe
˜
nd
o
.
n tri

.
du
.
´o
.
ida
.
ng tˆo

ng h˜u
.
uha
.
n
Q(x)=a
0
z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
(2.1)
trong d
´o z l`a biˆe
´

n, a
0
,a
1
,...,a
n
l`a c´ac sˆo
´
;v`amˆo
˜
itˆo

ng da
.
ng (2.1) dˆe
`
u
l`a d
ath´u
.
c.
K´yhiˆe
.
u: Q(z) ∈P[z].
Nˆe
´
u a
0
,a
1

,...,a
n
∈ C th`ı ngu
.
`o
.
i ta n´oi r˘a
`
ng Q(z)l`ad
ath´u
.
c trˆen
tru
.
`o
.
ng sˆo
´
ph´u
.
c: Q(z) ∈ C[z]. Nˆe
´
u a
0
,a
1
,...,a
n
∈ R th`ı Q(z)l`ada
th´u

.
c trˆen tru
.
`o
.
ng sˆo
´
thu
.
.
c: Q(z) ∈ R[z].
2.1. D
-
ath´u
.
c 45
Nˆe
´
u Q(z) =0th`ıbˆa
.
ccu

a n´o (k´y hiˆe
.
u degQ(z)) l`a sˆo
´
m˜u cao nhˆa
´
t
cu


amo
.
i lu˜y th`u
.
acu

a c´ac sˆo
´
ha
.
ng =0cu

ad
ath´u
.
cv`ahˆe
.
sˆo
´
cu

asˆo
´
ha
.
ng c´o lu˜yth`u
.
a cao nhˆa
´

td
´o g o
.
il`ahˆe
.
sˆo
´
cao nhˆa
´
t.
Nˆe
´
u P (z)v`aQ(z) ∈P[z] l`a c˘a
.
pd
ath´u
.
cv`aQ(z) =0th`ıtˆo
`
nta
.
i
c˘a
.
pd
ath´u
.
c h(z)v`ar(z) ∈P[z] sao cho
1
+

P = Qh + r,
2
+
ho˘a
.
c r(z) = 0, ho˘a
.
c degr<degQ.
D
-
i
.
nhl´yB´ezout. Phˆa
`
ndu
.
cu

aph´ep chia d
ath´u
.
c P (z) cho nhi
.
th´u
.
c
z − α l`a h˘a
`
ng P (α) (r = P (α)).
2.1.1 D

-
ath´u
.
c trˆen tru
.
`o
.
ng sˆo
´
ph´u
.
c C
Gia

su
.

Q(z) ∈ C[z]. Nˆe
´
u thay z bo
.

isˆo
´
α th`ı ta thu d
u
.
o
.
.

csˆo
´
ph´u
.
c
Q(α)=a
0
α
n
+ a
1
α
n−1
+ ···+ a
n−1
α + a
n
.
D
-
i
.
nh ngh˜ıa 2.1.1. Nˆe
´
u Q(α) = 0 th`ı sˆo
´
z = α d
u
.
o

.
.
cgo
.
il`anghiˆe
.
m
cu

ad
ath´u
.
c Q(z) hay cu

aphu
.
o
.
ng tr`ınh d
a
.
isˆo
´
Q(z)=0.
D
-
i
.
nh l´y Descate. D
ath´u

.
c Q(z) chia hˆe
´
t cho nhi
.
th´u
.
c z − α khi v`a
chı

khi α l`a nghiˆe
.
mcu

ad
ath´u
.
c P (z) (t´u
.
cl`aP (α)=0).
D
-
i
.
nh ngh˜ıa 2.1.2. Sˆo
´
ph´u
.
c α l`a nghiˆe
.

mbˆo
.
i m cu

ad
ath´u
.
c Q(z)
nˆe
´
uv`achı

nˆe
´
u Q(z) chia hˆe
´
tcho(z − α)
m
nhu
.
ng khˆong chia hˆe
´
tcho
(z − α)
m+1
.Sˆo
´
m du
.
o

.
.
cgo
.
il`abˆo
.
i cu

a nghiˆe
.
m α. Khi m = 1, sˆo
´
α go
.
i
l`a nghiˆe
.
md
o
.
n cu

a Q(z).
Trong tiˆe
´
t 2.1.1 ta biˆe
´
tr˘a
`
ng tˆa

.
pho
.
.
psˆo
´
ph´u
.
c C d
u
.
o
.
.
clˆa
.
pnˆenb˘a
`
ng
c´ach gh´ep thˆem v`ao cho tˆa
.
pho
.
.
psˆo
´
thu
.
.
c R mˆo

.
t nghiˆe
.
ma

o x = i cu

a
phu
.
o
.
ng tr`ınh x
2
+1=0v`amˆo
.
t khi d˜a gh´ep i v`ao th`ı mo
.
iphu
.
o
.
ng
tr`ınh d
ath´u
.
cd
ˆe
`
uc´onghiˆe

.
mph´u
.
c thu
.
.
csu
.
.
.Dod
´o khˆong cˆa
`
n pha

i
s´ang ta
.
o thˆem c´ac sˆo
´
m´o
.
id
ˆe

gia

iphu
.
o
.

ng tr`ınh (v`ı thˆe
´
C c`on d
u
.
o
.
.
cgo
.
i
l`a tru
.
`o
.
ng d
´ong da
.
isˆo
´
).
D
-
i
.
nh l´y Gauss (d
i
.
nh l´y co
.

ba

ncu

ad
a
.
isˆo
´
).
46 Chu
.
o
.
ng 2. D
-
ath´u
.
c v`a h`am h˜u
.
uty

Mo
.
idath´u
.
cd
a
.
isˆo

´
bˆa
.
c n (n  1) trˆen tru
.
`o
.
ng sˆo
´
ph´u
.
cd
ˆe
`
u c´o ´ıt
nhˆa
´
tmˆo
.
t nghiˆe
.
mph´u
.
c.
T`u
.
d
i
.
nh l´y Gauss r´ut ra c´ac hˆe

.
qua

sau.
1
+
Mo
.
idath´u
.
cbˆa
.
c n (n  1) trˆen tru
.
`o
.
ng sˆo
´
ph´u
.
cd
ˆe
`
uc´od´ung n
nghiˆe
.
mnˆe
´
umˆo
˜

i nghiˆe
.
md
u
.
o
.
.
c t´ınh mˆo
.
tsˆo
´
lˆa
`
nb˘a
`
ng bˆo
.
icu

an´o,t´u
.
cl`a
Q(x)=a
0
(z − α
1
)
m
1

(z − α
2
)
m
2
···(z − α
k
)
m
k
, (2.2)
trong d
´o α
i
= α
j
∀ i = j v`a m
1
+ m
2
+ ···+ m
k
= n.
D
ath´u
.
c (2.1) v´o
.
ihˆe
.

sˆo
´
cao nhˆa
´
t a
0
=1du
.
o
.
.
cgo
.
il`ad
ath´u
.
c thu
go
.
n.
2
+
Nˆe
´
u z
0
l`a nghiˆe
.
mbˆo
.

i m cu

adath´u
.
c Q(z)th`ısˆo
´
ph´u
.
cliˆen ho
.
.
p
v´o
.
in´o
z
0
l`a nghiˆe
.
mbˆo
.
i m cu

adath´u
.
c liˆen ho
.
.
p
Q(z), trong d´o d a

th´u
.
c
Q(z)du
.
o
.
.
c x´ac d
i
.
nh bo
.

i
Q(z)
def
= a
0
z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
. (2.3)

2.1.2 D
-
ath´u
.
c trˆen tru
.
`o
.
ng sˆo
´
thu
.
.
c R
Gia

su
.

Q(z)=z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
(2.4)

l`a d
ath´u
.
c quy go
.
nv´o
.
ihˆe
.
sˆo
´
thu
.
.
c a
1
,a
2
,...,a
n
.
D
ath´u
.
c n`ay c´o t´ınh chˆa
´
td
˘a
.
cbiˆe

.
t sau dˆa y .
D
-
i
.
nh l´y 2.1.1. Nˆe
´
usˆo
´
ph´u
.
c α l`a nghiˆe
.
mbˆo
.
i m cu

ad
ath´u
.
c (2.4) v´o
.
i
hˆe
.
sˆo
´
thu
.

.
c th`ı sˆo
´
ph´u
.
c liˆen ho
.
.
pv´o
.
in´o
α c˜ung l`a nghiˆe
.
mbˆo
.
i m cu

a
d
ath´u
.
cd
´o.
Su
.

du
.
ng d
i

.
nh l´y trˆen dˆay ta c´o thˆe

t`ım khai triˆe

ndath´u
.
cv´o
.
ihˆe
.
sˆo
´
thu
.
.
c Q(z) th`anh t´ıch c´ac th`u
.
asˆo
´
.Vˆe
`
sau ta thu
.
`o
.
ng chı

x´et d
a

th´u
.
cv´o
.
ihˆe
.
sˆo
´
thu
.
.
cv´o
.
ibiˆe
´
nchı

nhˆa
.
n gi´a tri
.
thu
.
.
cnˆen biˆe
´
nd
´o t a k ´y
hiˆe
.

ul`ax thay cho z.
2.1. D
-
ath´u
.
c 47
D
-
i
.
nh l´y 2.1.2. Gia

su
.

d
ath´u
.
c Q(x) c´o c´ac nghiˆe
.
m thu
.
.
c b
1
,b
2
,...,b
m
v´o

.
ibˆo
.
itu
.
o
.
ng ´u
.
ng β
1

2
,...,β
m
v`a c´ac c˘a
.
p nghiˆe
.
mph´u
.
cliˆen ho
.
.
p a
1
v`a a
1
, a
2

v`a a
2
,...,a
n
v`a a
n
v´o
.
ibˆo
.
itu
.
o
.
ng ´u
.
ng λ
1

2
,...,λ
n
. Khi d´o
Q(x)=(x− b
1
)
β
1
(x− b
2

)
β
2
···(x − b
m
)
β
m
(x
2
+ p
1
x + q
1
)
λ
1
×
× (x
2
+ p
2
x + q
2
)
λ
2
···(x
2
+ p

n
x + q
b
)
λ
n
. (2.5)
D
-
i
.
nh l´y 2.1.3. Nˆe
´
ud
ath´u
.
c Q(x)=x
n
+ a
1
x
n−1
+ ···+ a
n−1
x + a
n
v´o
.
ihˆe
.

sˆo
´
nguyˆen v`a v´o
.
ihˆe
.
sˆo
´
cao nhˆa
´
tb˘a
`
ng 1 c´o nghiˆe
.
mh˜u
.
uty

th`ı
nghiˆe
.
md
´o l`a sˆo
´
nguyˆen.
D
ˆo
´
iv´o
.

id
ath´u
.
cv´o
.
ihˆe
.
sˆo
´
h˜u
.
uty

ta c´o
D
-
i
.
nh l´y 2.1.4. Nˆe
´
u phˆan sˆo
´
tˆo
´
i gia

n

m
(, m ∈ Z,m>0) l`a nghiˆe

.
m
h˜u
.
uty

cu

a phu
.
o
.
ng tr`ınh v´o
.
ihˆe
.
sˆo
´
h˜u
.
uty

a
0
x
n
+a
1
x
n−1

+···+a
n−1
x+
a
n
=0th`ı  l`a u
.
´o
.
ccu

asˆo
´
ha
.
ng tu
.
.
do a
n
v`a m l`a u
.
´o
.
ccu

ahˆe
.
sˆo
´

cao
nhˆa
´
t a
0
.
C
´
AC V
´
IDU
.
V´ı d u
.
1. Gia

su
.

P (z)=a
0
z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a

n
.Ch´u
.
ng
minh r˘a
`
ng:
1
+
Nˆe
´
u P (z) ∈ C[z]th`ıP (z)=P (z).
2
+
Nˆe
´
u P (z) ∈ R[z]th`ıP (z)=P (z).
Gia

i. 1
+
´
Ap du
.
ng c´ac t´ınh chˆa
´
tcu

a ph´ep to´an lˆa
´

y liˆen ho
.
.
p ta thu
d
u
.
o
.
.
c
p(Z)=a
0
z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
= a
0
z
n
+ a
1
z

n−1
+ ···+ a
n−1
z + a
n
= a
0
(z)
n
+ a
1
(z)
n−1
+ ···+ a
n−1
z + a
n
= P (z).
48 Chu
.
o
.
ng 2. D
-
ath´u
.
c v`a h`am h˜u
.
uty


2
+
Gia

su
.

P (z) ∈ R[z]. Khi d
´o
P (z)=a
0
z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
= a
0
z
n
+ a
1
z
n−1
+ ···+ a

n−1
z + a
n
= a
0
(z)
n
+ a
1
(z)
n−1
+ ···+ a
n−1
z + a
n
= a
0
(z)
n
+ a
1
(z)
n−1
+ ···+ a
n−1
z + a
n
= P (z).
T`u
.

d
´oc˜ung thu du
.
o
.
.
c P (z)=
P (z)v`ı P(z)=P(z). 
V´ı d u
.
2. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u a l`a nghiˆe
.
mbˆo
.
i m cu

ad
ath´u
.
c
P (z)=a
0
z
n

+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
,a
0
=0
th`ı sˆo
´
ph´u
.
c liˆen ho
.
.
p
a l`a nghiˆe
.
mbˆo
.
i m cu

adath´u
.
c
P (z)=a
0

z
n
+ a
1
z
n−1
+ ···+ a
n−1
z + a
n
(go
.
il`adath´u
.
c liˆen ho
.
.
pph´u
.
cv´o
.
id
ath´u
.
c P (z)).
Gia

i. T`u
.
v´ıdu

.
1 ta c´o
P (z)=P (z). (2.6)
V`ı a l`a nghiˆe
.
mbˆo
.
i m cu

a P (z)nˆen
P (z)=(z − a)
m
Q(z),Q(a) = 0 (2.7)
trong d
´o Q(z)l`adath´u
.
cbˆa
.
c n − m.T`u
.
(2.6) v`a (2.7) suy ra
P (z)=P (z)=(z − a)
m
Q(z)=(z − a)
m
Q(z). (2.8)
Ta c`on cˆa
`
nch´u
.

ng minh r˘a
`
ng
Q(a) = 0. Thˆa
.
tvˆa
.
y, nˆe
´
u Q(a)=0th`ı
b˘a
`
ng c´ach lˆa
´
y liˆen ho
.
.
pph´u
.
cmˆo
.
tlˆa
`
nn˜u
.
a ta c´o
Q(a)=Q(a)=0 ⇒ Q(a)=0.
D
iˆe
`

u n`ay vˆo l´y. B˘a
`
ng c´ach d˘a
.
t t = z,t`u
.
(2.8) thu d
u
.
o
.
.
c
P (t)=(t − a)
m
Q(t), Q(a) =0.
2.1. D
-
ath´u
.
c 49
D˘a

ng th´u
.
c n`ay ch´u
.
ng to

r˘a

`
ng t =
a l`a nghiˆe
.
mbˆo
.
i m cu

adath´u
.
c
P (t). 
V´ı d u
.
3. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u a l`a nghiˆe
.
mbˆo
.
i m cu

ad
ath´u
.
cv´o

.
i
hˆe
.
sˆo
´
thu
.
.
c P (z)=a
0
z
n
+ a
1
z
n−1
+ ···+ a
n
(a
0
= 0) th`ı sˆo
´
ph´u
.
c liˆen
ho
.
.
p

a c˜ung l`a nghiˆe
.
mbˆo
.
i m cu

ach´ınh dath´u
.
cd
´o.
Gia

i. T`u
.
v´ıdu
.
1, 2
+
ta c´o
P (z)=P (z) (2.9)
v`a do a l`a nghiˆe
.
mbˆo
.
i m cu

a n´o nˆen
P (z)=(z − a)
m
Q(z) (2.10)

trong d
´o Q(z)l`adath´u
.
cbˆa
.
c n − m v`a Q(a) =0.
Ta cˆa
`
nch´u
.
ng minh r˘a
`
ng
P (z)=(z −
a)
m
Q(z),Q(a) =0. (2.11)
Thˆa
.
tvˆa
.
yt`u
.
(2.9) v`a (2.10) ta c´o
P (z)=
(z − a)
m
Q(z)=(z − a)
m
· Q(z)

=

(z − a)

m
Q(z)=(z − a)
m
Q(z)
v`ı theo (2.9)
Q(
z)=Q(z) ⇒ Q(z)=Q(z).
Ta c`on cˆa
`
nch´u
.
ng minh Q(
a) = 0. Thˆa
.
tvˆa
.
yv`ı Q(a) =0nˆen
Q(a) =0v`adod´o Q(a) =0v`ıdˆo
´
iv´o
.
id
ath´u
.
cv´o
.

ihˆe
.
sˆo
´
thu
.
.
cth`ı
Q(t)=Q(t). 
V´ı du
.
4. Gia

iphu
.
o
.
ng tr`ınh z
3
− 4z
2
+4z − 3=0.
Gia

i. T`u
.
d
i
.
nh l´y 4 suy r˘a

`
ng c´ac nghiˆe
.
m nguyˆen cu

aphu
.
o
.
ng tr`ınh
v´o
.
ihˆe
.
sˆo
´
nguyˆen d
ˆe
`
ul`au
.
´o
.
ccu

asˆo
´
ha
.
ng tu

.
.
do a = −3. Sˆo
´
ha
.
ng tu
.
.
do
50 Chu
.
o
.
ng 2. D
-
ath´u
.
c v`a h`am h˜u
.
uty

a = −3 c´o c´ac u
.
´o
.
cl`a±1, ±3. B˘a
`
ng c´ach kiˆe


m tra ta thu d
u
.
o
.
.
c z
0
=3
l`a nghiˆe
.
m nguyˆen. T`u
.
d
´o
z
3
− 4z
2
+4z − 3=(z − 3)(z
2
− z +1)
=(z − 3)(z −
1
2
+ i

3
2


z −
1
2
− i

3
2

hay l`a phu
.
o
.
ng tr`ınh d
˜a cho c´o ba nghiˆe
.
ml`a
z
0
=3,z
1
=
1
2
− i

3
2
; z
2
=

1
2
+ i

3
2
· 
V´ı d u
.
5. Biˆe

udiˆe
˜
nd
ath´u
.
c P
6
(z)=z
6
− 3z
4
+4z
2
− 12 du
.
´o
.
ida
.

ng:
1
+
t´ıch c´ac th`u
.
asˆo
´
tuyˆe
´
n t´ınh;
2
+
t´ıch c´ac th`u
.
asˆo
´
tuyˆe
´
n t´ınh v´o
.
i tam th´u
.
cbˆa
.
c hai v´o
.
ihˆe
.
sˆo
´

thu
.
.
c.
Gia

i. Tat`ımmo
.
i nghiˆe
.
mcu

ad
ath´u
.
c P (z). V`ı
z
6
− 3z
4
+4z
2
− 12 = (z
2
− 3)(z
4
+4)
nˆen r˜o r`ang l`a
z
1

= −

3,z
2
=

3,z
3
=1+i,
z
4
=1− i, z
5
= −1+i, z
6
= −1 − i.
T`u
.
d
´o
1
+
P
6
(z)=(z−

3)(z +

3)(z−1−i)(z−1+i)(z +1−i)(z +1+i)
2

+
B˘a
`
ng c´ach nhˆan c´ac c˘a
.
p nhi
.
th´u
.
c tuyˆe
´
n t´ınh tu
.
o
.
ng ´u
.
ng v´o
.
i c´ac
nghiˆe
.
mph´u
.
c liˆen ho
.
.
pv´o
.
i nhau ta thu d

u
.
o
.
.
c
P
6
(z)=(z −

3)(z +

3)(z
2
− 2z + 2)(z
2
+2z +2). 
V´ı d u
.
6. T`ım d
ath´u
.
chˆe
.
sˆo
´
thu
.
.
cc´olu˜yth`u

.
a thˆa
´
p nhˆa
´
t sao cho c´ac
sˆo
´
z
1
=3,z
2
=2− i l`a nghiˆe
.
mcu

a n´o.
2.1. D
-
ath´u
.
c 51
Gia

i. V`ıdath´u
.
cchı

c´o hˆe
.

sˆo
´
thu
.
.
cnˆen c´ac nghiˆe
.
mph´u
.
c xuˆa
´
thiˆe
.
n
t`u
.
ng c˘a
.
p liˆen ho
.
.
pph´u
.
c, ngh˜ıa l`a nˆe
´
u z
2
=2− i l`a nghiˆe
.
mcu


an´oth`ı
z
2
=2+i c˜ung l`a nghiˆe
.
mcu

a n´o. Do d´o
P (z)=(z − 3)(z − 2+i)(z − 2 − i)=z
3
− 7z
2
+17z − 15. 
V´ı du
.
7. Phˆan t´ıch d
ath´u
.
c
(x +1)
n
− (x − 1)
n
th`anh c´ac th`u
.
asˆo
´
tuyˆe
´

n t´ınh.
Gia

i. Ta c´o
P (x)=(x +1)
n
− (x − 1)
n
=[x
n
+ nx
n−1
+ ...]− [x
n
− nx
n−1
+ ...]=2nx
n−1
+ ...
Nhu
.
vˆa
.
y P (x)l`ad
ath´u
.
cbˆa
.
c n − 1v´o
.

ihˆe
.
sˆo
´
cao nhˆa
´
tb˘a
`
ng 2n.D
ˆo
´
i
v´o
.
id
ath´u
.
c n`ay ta d
˜abiˆe
´
t(§1) nghiˆe
.
mcu

a n´o:
x
k
= icotg

n

,k=1, 2,...,n− 1.
Do d
´o
(x +1)
n
− (x − 1)
n
=2n

x − icotg
π
n

x − icotg

n

···

x − icotg
(n − 1)π
n

.
Khi phˆan t´ıch d
ath´u
.
c trˆen tru
.
`o

.
ng P th`anh th`u
.
asˆo
´
ta thu
.
`o
.
ng
g˘a
.
pnh˜u
.
ng d
ath´u
.
c khˆong thˆe

phˆan t´ıch th`anh t´ıch hai d
ath´u
.
c c´o bˆa
.
c
thˆa
´
pho
.
ntrˆenc`ung tru

.
`o
.
ng P d
´o. Nh˜u
.
ng d
ath´u
.
cn`ayd
u
.
o
.
.
cgo
.
il`ad
a
th´u
.
cbˆa
´
t kha

quy.
Ch˘a

ng ha
.

n: d
ath´u
.
c x
2
− 2l`akha

quy trˆen tru
.
`o
.
ng sˆo
´
thu
.
.
cv`ı:
x
2
− 2=(x −

2)(x +

2)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×