Tải bản đầy đủ (.pdf) (1 trang)

Nhắc lại giới hạn, đạo hàm, vi phân

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (64.67 KB, 1 trang )

Trần Só Tùng Tích phân
Trang 1
Nhắc lại Giới hạn – Đạo hàm – Vi phân
1. Các giới hạn đặc biệt:
a)
®
=
x0
sinx
lim1
x

Hệ quả:
®
=
x0
x
lim1
sinx

®
=
u(x)0
sinu(x)
lim1
u(x)

®
=
u(x)0
u(x)


lim1
sinu(x)

b)
x
x
1
lim1e,xR
x
®¥
ỉư
+=Ỵ
ç÷
èø

Hệ quả:
1
x
x0
lim(1x)e.
®
+=

x0
ln(1x)
lim1
x
®
+
=


x
x0
e1
lim1
x
®
-
=

2. Bảng đạo hàm các hàm số sơ cấp cơ bản và các hệ quả:
(c)’ = 0 (c là hằng số)
1
(x)'x
aa-
=a
1
(u)'uu'
aa-
=a
2
11
'
xx
ỉư
=-
ç÷
èø

2

1u'
'
uu
ỉư
=-
ç÷
èø

( )
1
x'
2x
=

( )
u'
u'
2u
=

xx
(e)'e=
uu
(e)'u'.e=
xx
(a)'a.lna=
uu
(a)'a.lna.u'=
1
(lnx)'

x
=
u'
(lnu)'
u
=
a
1
(logx')
x.lna
=
a
u'
(logu)'
u.lna
=
(sinx)’ = cosx (sinu)’ = u’.cosu
2
2
1
(tgx)'1tgx
cosx
==+
2
2
u'
(tgu)'(1tgu).u'
cosu
==+
2

2
1
(cotgx)'(1cotgx)
sinx
-
==-+
2
2
u'
(cotgu)'(1cotgu).u'
sinu
-
==-+
3. Vi phân:
Cho hàm số y = f(x) xác đònh trên khoảng (a ; b) và có đạo hàm tại x(a;b)Ỵ . Cho số
gia Dx tại x sao cho xx(a;b)+DỴ . Ta gọi tích y’.Dx (hoặc f’(x).Dx) là vi phân của
hàm số y = f(x) tại x, ký hiệu là dy (hoặc df(x)).
dy = y’.Dx (hoặc df(x) = f’(x).Dx
Áp dụng đònh nghóa trên vào hàm số y = x, thì
dx = (x)’Dx = 1.Dx = Dx
Vì vậy ta có: dy = y’dx (hoặc df(x) = f’(x)dx)

×