Tải bản đầy đủ (.docx) (86 trang)

Nghiên cứu tính chất của hợp chất la2 3ca1 3mn1 xCOxO3

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.65 MB, 86 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-----------------

Trần Minh Tiến

NGHIÊN CỨU TÍNH CHẤT CỦA HỢP CHẤT La2/3Ca1/3Mn1-xCoxO3

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – 2012


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
----------------

Trần Minh Tiến

NGHIÊN CỨU TÍNH CHẤT CỦA HỢP CHẤT La2/3Ca1/3Mn1-xCoxO3

Chuyên ngành: Vật lý Nhiệt
Mã số:

LUẬN VĂN THẠC SĨ KHOA HỌC

NGƯỜI HƯỚNG DẪN KHOA
HỌC
GS.TS Nguyễn Huy Sinh

Hà Nội – 2012




MỤC LỤC
Danh mục các đồ thị………………………………………………………………..
Danh mục các bảng………………………………………………………………….
MỞ ĐẦU……………………………………………………………………………1
Chương 1 - MỘT SỐ TÍNH CHẤT ĐẶC TRƯNG CỦA HỆ VẬT LIỆU
PEROVSKITE La1-xCaxMnO3……………………………………………………...3
1.1. Hợp chất côban trong perovskite…………………...….…...……………3
1.2. Kích thước của cation ở vị trí A................................................................................. 5
1.3. Trường bát diện, sự tách mức năng lượng và trật tự quỹ đạo trong trường
tinh thể bát diện................................................................................................................................... 10
1.4. Hiệu ứng Jahn - Teller................................................................................................ 12
1.5. Trạng thái spin và cấu hình spin của các điện tử lớp d trong trường
tinh thể bát diện BO6......................................................................................................................... 14
1.6. Tương tác siêu trao đổi (Super exchange - SE)……….......…………….16
1.7. Tương tác trao đổi kép (Double exchange - DE)………………......…...17
1.8. Sự tồn tại đồng thời và cạnh tranh giữa hai loại tương tác AFM và FM
trong hợp chất manganite có pha tạp......................................................................................... 19
1.9. Hiệu ứng từ

điện trở

khổng lồ (CMR)

trong

Perovskite

manganite.............................................................................................................................................. 20

1.10. Lý thuyết hàm Bloch’s............................................................................................. 22
Chương 2 - THỰC NGHIỆM....................................................................................................... 24
2.1. Chế tạo mẫu................................................................................................................... 24
2.2. Phương pháp nghiên cứu………....…………………......…………….....28


2.2.1.Nghiên cứu cấu trúc: Phép đo nhiễu xạ bột Rơnghen (nhiễu xạ bột tia

X)…………………………………………………………….............…………..….29
2.2.2. Phân tích phổ tán sắc năng lượng (EDS)…………………….…...30
2.2.3. Ảnh hiển vi điện tử quét…………….…………….……………....30
2.2.4. Phép đo từ độ M(T)……………………………….………………31
2.2.5. Phép đo điện trở R(T)…………………….……………..………..34
Chương 3 - THẢO LUẬN VÀ KẾT QUẢ............................................................................... 37
3.1. Kết quả phân tích cấu trúc tinh thể....................................................................... 37
3.2. Kết quả phân tích thành phần mẫu......................................................................... 40
3.3. Sự phụ thuộc của từ độ vào nhiệt độ của mẫu.................................................. 46
3.4. Điện trở phụ thuộc vào nhiệt độ của hệ mẫu La2/3Ca1/3Mn1-xCoxO3

(x = 0.05  0.30) trong vùng từ trường thấp H = 0.00 – 0.40T......................................... 50
3.5. Từ trở phụ thuộc vào nhiệt độ trong vùng từ trường thấp
(H=0.00.4T)...................................................................................................................................... 53
3.6. Từ trở phụ thuộc vào từ trường tại nhiệt xác định........................................... 56
KẾT LUẬN........................................................................................................................... 60
TÀI LIỆU THAM KHẢO................................................................................................. 61


DANH MỤC CÁC HÌNH VÀ ĐỒ THỊ
I/ DANH MỤC CÁC HÌNH
Hình 1.1: Khối perovskite (La,Ca)MnO3. La hoặc Ca ở vị trí A và Mn ở tâm hình

lập phương.
Hình 1.2: Các ô đơn vị Pnma của La1-xCaxMnO3 tạo ra do sự biến dạng từ các ô
đơn vị khối. Các ion được thể hiện bằng màu đen (mangan), màu xám (La hoặc Ca)
và trắng (oxy). Hình được hiển thị bao gồm bốn khối perovskite.
Hình 1.3. Ô đơn vị hình thoi (đường đậm) và khối (đường mờ) trong La1-xCaxMnO3
và định hướng tương đối của các trục tinh thể.
Hình 1.4. Điện trở suất [R (T) / R (T = 300 K)] so với nhiệt độ cho một loạt các
mẫu của La0.7-xYxCa0.3MnO3 với x = 0, 0,07, 0,1, 0,15, 0,2, và 0,25. liên kết Mn-OMn trở thành phi tuyến tính với giá trị Y ngày càng tăng.
Hình 1.5: Nhiệt độ phụ thuộc điện trở suất của mẫu đa tinh thểLa 0.7M0.3MnO3. Vị
trí Cation A có kích thước trung bình là 1,20Å .
Hình 1.6: Sự tách mức năng lượng của ion Mn3.
Hình 1.7: Hình dạng của các hàm sóng eg: (a) d x 2  y 2 , (b) d z 2
Hình 1.8: Hình dạng của các hàm sóng t2g: (a) dxy, (b) dyz và (c) dzx
Hình 1.9: Méo mạng Jahn – Teller.
Hình 1.10: Sự phụ thuộc của năng lượng toàn phần E, P và  vào trạng thái spin
của các điện tử.
Hình 1.11: Sự sắp xếp các điện tử trên các mức năng lượng suy biến và trạng thái
spin.
Hình 1.12: Sự xen phủ quỹ đạo và chuyển điện tử trong tương tác SE.
3+ 24+
3+
Hình 1.13: Mô hình cơ chế tương tác trao đổi kép của chuỗi -Mn -O -Mn -Mn O2-- Mn4+Hình 1.14: Mô hình về sự tồn tại không đồng nhất các loại tương tác trong các
chất bán dẫn từ.


Hình 1.15: a) Cấu trúc phản sắt từ.

b) Cấu trúc sắt từ.

Hình 1.16: Sơ đồ mạch điện tương đương của nguyên lý hai dòng.

Hình 2.1: Quá trình khuyếch tán giữa hai kim loại A và B.
Hình 2.2: Giản đồ nhiễu xạ tia X của mẫu La0,60Ca0,30MnO3-δ
Hình 2.3: Sơ đồ hệ đo từ độ.
Hình 2.4: Hình dạng xung tín hiệu.
Hình 2.5: Sơ đồ khối của phép đo bốn mũi dò.
Hình 2.6: Sơ đồ chi tiết hệ đo điện trở bằng phương pháp bốn mũi dò.
Hình 3.1: Giản đồ nhiễu xạ tia X của các mẫu La2/3Ca1/3Mn1-xCoxO3 (x = 0,05 –
0,30)
Hình 3.2: Giản đồ nhiễu xạ tia X của các mẫu La2/3Ca1/3MnO3
Hình 3.3. Hằng số mạng và thể tích ô cơ sở của hệ mẫu La2/3Ca1/3Mn1-xCoxO3.
Hình 3.4: Phổ tán sắc năng lượng điện tử của hệ mẫu La2/3Ca1/3Mn1-xCoxO3

(a) x = 0,05; (b) x = 0,10; (c) x = 0,15; (d) x = 0,20; (e) x = 0,25 và (f) x = 0,30
Hình 3.5: Ảnh hiện vi điện tử quét (SEM) của hệ La2/3Ca1/3Mn1-xCoxO3
Hình 3.6: Đường cong từ độ phụ thuộc nhiệt độ của các mẫu La2/3Ca1/3Mn1xCoxO3

(x =0,050,30)

Hình 3.7: Sự giảm từ độ M (T) / MS phụ thuộc vào T3/2
Hình 3.8: Điện trở phụ thuộc nhiệt độ của hệ La2/3Ca1/3Mn1-xCoxO3
Hình 3.9: Từ trở phụ thuộc nhiệt độ của các mẫu La2/3Ca1/3Mn1-xCoxO3 (0,05 ≤ x ≤
0,30)
Hình 3.10: Đường cong từ trở phụ thuộc nhiệt độ của hệ La2/3Ca1/3Mn1-xCoxO3 (
0,05  x  0,3 )

Hình 3.11: Đường cong từ trở cực đại phụ thuộc nồng độ pha tạp Co
Hình 3.12: Đường cong CMR(H)T của mẫu La2/3Ca1/3MnO3
Hình 3.13: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,95Co0,05O3



Hình 3.14: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,90Co0,10O3
Hình 3.15: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,85Co0,15O3
Hình 3.16: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,80Co0,20O3
Hình 3.17: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,85Co0,25O3
Hình 3.18: Đường cong CMR(H)T của mẫu La2/3Ca1/3Mn0,70Co0,30O3

II/ DANH MỤC CÁC BẢNG.
Bảng 3.1: Các tham số mạng, thể tích ô cơ sở, và các thừa số dung hạn (τ) của các
mẫu La2/3Ca1/3Mn1-xCoxO3
Bảng 3.2: Nhiệt độ chuyển pha sắt từthuận từ (TC) của hệ La2/3Ca1/3Mn1-xCoxO3
Bảng 3.3: Hệ số từ hóa sóng spin của hệ La2/3Ca1/3Mn1-xCoxO3
Bảng 3.4: Giá trị từ trở cực đại của các mẫu La2/3Ca1/3Mn1-xCoxO3 (x = 0,05 
0,30)


MỞ ĐẦU
Ngày nay, sự phát triển của các ngành kỹ thuật như chế tạo cơ khí, xây dựng,
kỹ thuật điện và điện tử, giao thông vận tải... đều gắn liền với vật liệu, đặc biệt là
những ngành kỹ thuật cao. Ngành nào cũng cần đến các vật liệu với tính năng ngày
càng đa dạng và chất lượng ngày càng cao. Trong khi nguồn tài nguyên thiên nhiên
đang dần cạn kiện thì việc phát hiện, tìm tòi và nghiên cứu những vật liệu mới đã
trở thành một trong các hướng mũi nhọn của các quốc gia.
Một trong những vật liệu được nghiên cứu rộng rãi trong những năm gần đây
là Perovskite và đã trở nên phổ biến trong lĩnh vực khoa học vật liệu mới, đặc biệt
là các vật liệu Perovskite chứa mangan [6, 7, 13, 14, 15].
Có hai yêu cầu quan trọng để đưa một vật liệu mới ứng dụng thực tế, đó là:
1.

Nhiệt độ chuyển pha TC phải cao, càng gần nhiệt độ phòng càng tốt.


2.

Hiệu ứng từ nhiệt xảy ra phải lớn.

Ngoài việc đáp ứng hai yêu cầu cơ bản trên, vật liệu Perovskite còn có nhiều
tính chất thú vị khác như: có từ trở lớn, có chuyển pha kim loại – điện môi... Đặc
biệt là có nhiệt độ chuyển pha gần với nhiệt độ phòng. Do có nhiều đặc tính điện từ - hóa khác nhau nên Perovskite có mặt trong rất nhiều ứng dụng và được coi là
một trong những vật liệu rất lý thú. Nhà vật lý người Ấn Độ C. N. R. Rao từng phát
biểu rằng “Perovskite là trái tim của vật lý chất rắn” [1]. Với tính chất từ điện trở
siêu khổng lồ, Perovskite rất hứa hẹn cho các linh kiện spintronics và các cảm biến
từ siêu nhạy. Với nhiều tính chất đặc biệt như siêu dẫn nhiệt độ cao, sắt điện...
Perovskite rất hữu ích cho nhiều linh kiện điện tử. Ngoài ra, Perovskite với các tính
chất hấp phụ và xúc tác còn được sử dụng trong các pin nhiên liệu.
Ngoài ra một điều đặc biệt trong hợp chất Perovskite là khi thay thế thành
phần Mn bằng Co thì một số tính chất của chúng bị thay đổi. Trên cơ sở đó, đề tài
của luận văn được chọn là: “Nghiên cứu tính chất của hợp chất La 2/3Ca1/3Mn1xCoxO3”.

Mục đích của luận văn là tìm hiểu về cơ chế của hiệu ứng từ trở, một số

1


mô hình giải thích hiệu ứng này và tiến hành phép đo sự phụ thuộc vào nhiệt độ của
từ độ, điện trở và từ trở của hợp chất La 2/3Ca1/3Mn1-xCoxO3 trong vùng từ trường
thấp từ 0.0 - 0.4T.
Ngoài phần mở đầu, nội dung luận văn bao gồm:



Chương 1: Một số tính chất đặc trưng của hệ vật liệu

Perovskite
La1-xCaxMnO3.



Chương 2: Phương pháp thực nghiệm.



Chương 3: Kết quả và thảo luận.




Kết luận.
Tài liệu tham khảo.

Luận văn này được thực hiện tại Bộ môn Vật lý Nhiệt độ thấp, Khoa Vật lý,
Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội.

2


CHƢƠNG 1
MỘT SỐ TÍNH CHẤT ĐẶC TRƢNG CỦA HỆ VẬT LIỆU
PEROVSKITE La1-xCaxMnO3
La1-xCaxMnO3 là một thành viên của họ hợp chất perovskite có công thức hóa
học là ABO3. Ion Mn nằm ở vị trí B ở tâm của khối hộp và bát diện bao quanh được tạo
bởi 6 ion Ôxy. Gần kề là bát diện MnO6 nằm tại các đỉnh. Các ion La


3+

và Ca

2+

được

phân bố bất kỳ tại vị trí A trên mạng tinh thể. Khối lập phương đơn vị được biểu diễn ở
hình 1.1 Khối lập phương đơn vị lý tưởng khi nó nằm ở vùng nhiệt độ cao khoảng
1000K khi đó perovskite là một khối. Ở vùng nhiệt độ thấp hơn, bát diện MnO 6 bị méo
và xoay quanh Ôxy do đó làm giảm bớt tính đối xứng của hệ thống La 1-xCaxMnO3.
Dưới nhiệt độ 700K, cấu trúc trở thành trực thoi Pnma với mọi giá trị pha tạp của Ca,
dẫn đến có thể được nghiên cứu trong trường hợp không có quá trình
chuyển pha cấu trúc.

A

B
La hoặc Ca

Hình 1.1: Khối perovskite (La,Ca)MnO3. La hoặc Ca ở vị trí A và Mn
ở tâm hình lập phương.
1.1.

Các hợp chất pha tạp côban trong hệ perovskite

3



Trước khi trình bày về tính chất của vật liệu perovskite, tôi xin trình bày sơ
lược lý do lựa chọn kim loại côban trong họ vật liệu La1-xCaxMnO3.
Về mặt ứng dụng có ba tính chất hỗ trợ cho việc nghiên cứu các kim loại
thuộc họ côban sau:
1.

Từ trở: từ trở biểu thị trong các hợp chất thay thế côban như ( LnBaCo2O5 ,

Ln = Er, Gd) là khá thú vị bởi nó giúp phát triển kho lưu trữ dữ liệu từ.
2.
Suất dẫn ion cao: Các kim loại thuộc họ côban ba chiều có độ dẫn
ion cao
(phát hiện đầu tiên là La1-xMxCoO3, Ln = nguyên tố đất hiếm, M = La, Ca, Sr [1, 3,
4, 5]). Điều này giúp cho chúng trở thành ứng viên cho việc chế tạo chất xúc tác
ôxy hóa, các cảm biến khí và vật liệu điện cực cho các tế bào nhiên liệu.
3.

Siêu dẫn: Tính siêu dẫn được phát hiện gần đây trên hợp chất Na0.35CoO2 .

1.3H2O tương tự như tính chất siêu dẫn của các hợp chất siêu dẫn nhiệt độ cao chứa

đồng đã được thừa nhận.

Ba tính chất này có nguồn gốc từ sự tác động mạnh lẫn nhau giữa cấu trúc
tinh thể, tính chất truyền dẫn, dẫn đến các giản đồ pha như là hàm của nhiệt độ, từ
trường, áp suất, lượng ôxy và kích thước của các ion đất hiếm.
Một tính chất nổi bật của hợp chất pha tạp Co với các oxit kim loại 3d khác
là: sự tách mức trường tinh thể ( cf ) của mức năng lượng 3d của ion Co trong hợp
chất cùng bậc về cường độ như quy luật Hund về trao đổi năng lượng nội nguyên tử
J H . Do đó, sự dịch chuyển trạng thái spin có thể dễ dàng thực hiện hoặc do sự biến đổi

nhiệt độ, gây ra một từ trường hay áp suất với sự điều chỉnh các thông số cấu trúc (như
phân tử ôxy, loại đất hiếm) của vật liệu. Số điện tử trong lớp 3d của Co cho phép tồn tại
ba trạng thái spin: trạng thái spin cao (HS), trạng thái spin thấp (LS), trạng thái spin
trung gian (IS).
Cũng giống như các kim loại chuyển tiếp khác được pha tạp, các hợp chất pha
2+

tạp côban có thể cung cấp các vacancy ôxy, từ đó làm cho tỷ số Co , Co

3+

và Co

thay đổi. Điều này ảnh hưởng mạnh đến các tính chất từ và tính chất truyền và là

4

4+


nguồn gốc của độ dẫn ion hóa. Đây là các tính chất quan trọng trong các vật liệu
vancancy ôxy.
1.2. Kích thƣớc của cation ở vị trí A
Nếu các ion có dạng hình cầu va chạm nhau ở trạng thái cân bằng thì ta có thể
sử dụng thừa số dung hạn Goldschmidt (t) để biểu diễn tham số trong cấu trúc lý
tưởng. t được định nghĩa là tỷ số độ dài của đường chéo mặt trên đường rìa khối và
cho bởi công thức:

t


Trong đó rMN và rO lần lượt là bán kính của các ion Mn và Oxy và rA là
bán kính trung bình của cation ở vị trí A. Nếu các cation ở vị trí A lấp đầy chính xác
vào các lỗ trống thì khi đó t = 1 và perovskite trở thành 1 khối. Tuy nhiên, trong
thực tế không có trường hợp như vậy và cấu trúc ổn định thường dao động 0.8< t
<1. Trong tính toán, giá trị của các cation ở vị trí A và các giá trị bán kính ion được
lấy từ Shannon [10]. Bán kính của Mn 3+ và Mn4+ lần lượt là 0.58 và 0.53, giá trị
trung bình của rMN phụ thuộc vào tỷ lệ giữa hai loại ion Mn. Giá trị r O = 1.21Å, do
đó để thu được những khối lý tưởng, giá trị rA phải biến đổi tuyến tính từ 1.32 Å
với x = 0 và 1.25 Å với x = 1. rA gần giá trị lý tưởng, tốt hơn sự chồng chập giữa
các obitan Mn 3d và O 2p, lớn hơn sự ổn định ở pha kim loại [11]. Chú ý rằng giá
trị gián tiếp của t phụ thuộc mạnh vào bán kính ion và sự sắp xếp số lượng được sử
dụng.
Trong thực tế, các ion ở vị trí A thường nhỏ hơn bán kính lý tưởng, dẫn đến
sự quay của bát điện MnO6. La3+ và Ca2+ có bán kính lần lượt là 1.216 Å và 1.18 Å,
dẫn đến thừa số dung hạn là 0.958 với LaMnO 3 và 0.971 với CaMnO3. Khi x = 0.5,
rA = 1.198 Å và thừa số dung hạn bằng 0.965. Giá trị của rA về cơ bản nhỏ hơn
giá trị lý tưởng 1.286 Å và bát diện MnO6 xoay hoặc biến dạng để cải

5


thiện sự ép nén vật liệu. Ô đơn vị thực là trực thoi Pnma đã nêu ở trên. Cấu trúc
mạng Pnma có thể thu được từ khối perovskite lý tưởng như sau:
(i)

Sự xoay của các đỉnh bát diện Oxy quanh trục z. Khi các đỉnh bát diện

được duy trì kết nối, các đỉnh bát diện ở mặt phẳng x - y xoay theo các hướng
ngược nhau. Kết quả này dẫn đến sự tăng gấp đôi 2  2 ở các ô (thông thường là ở
mặt phẳng a - c). Dẫn đến sự giảm tính đối xứng tới 4 cạnh.


(ii)

Trạng thái nghiêng của bát diện trong liên kết Mn-O-Mn ở phương c

trong mặt phẳng a - c, dẫn đến trạng thái nghiêng đối nghịch của các lớp liền nhau.
Kết quả này dẫn đến sự tăng gấp đôi của các ô đơn vị nguyên thủy dọc theo trục b
và tính đối xứng trực thoi. Điều này dẫn đến việc giảm nhẹ b và một tham số khác
trong mặt phẳng (thường là c). Khối lượng của ô đơn vị có khuynh hướng được duy
trì và tăng nhẹ ở a.
Ô đơn vị thực là trực thoi Pnma với a  c  2ap và b  2ap . Trong đó, a p là
tham số mạng của ô đơn vị khối giả định. Ô đơn vị của La 1-xCaxMnO3 trở thành trực
thoi với mọi giá trị pha tạp của Ca. Ô đơn vị thực được chỉ ra ở hình 1.2 và mối quan
hệ giữa ô đơn vị lập phương và trực thoi được thể hiện ở hình 1.3.

Hình 1.2: Các ô đơn vị Pnma của La1-xCaxMnO3 tạo ra do sự biến dạng từ các ô
đơn vị khối. Các ion được thể hiện bằng màu đen (mangan), màu xám (La hoặc
Ca) và trắng (oxy). Hình được hiển thị bao gồm bốn khối perovskite[12].

6


Hình 1.3. Ô đơn vị hình thoi (đường đậm) và khối (đường mờ) trong
La1-xCaxMnO3 và định hướng tương đối của các trục tinh thể.
Một phần độ lệch trong đó là do độ kéo dài hoặc độ uốn cong các liên kết
Mn-O-Mn, sẽ làm giảm sự chồng chấp các obital và biên độ nhảy của độ linh động
các electron eg. Từ đó có thể nghiên cứu sự tác động do ảnh hưởng của áp suất hóa
học trong liên kết Mn-O-Mn bằng cách thay thế các ion hóa trị ba có kích thước
khác nhau trong cấu trúc perovskite trong khi vẫn giữ nguyên tỷ lệ các ion hóa trị
hai. Sự thay thế các ion làm cho hóa trị của Mn và thế linh động các electron là

không đổi. Tuy nhiên, điều này dẫn đến sự mất trật tự trong tinh thể.
Khi không tính đến độ mất trật tự của các cation, nhiều nhà khoa học đã
nghiên cứu chi tiết ảnh hưởng của kích thước trung bình của các cation ở vị trí A
[22] và kết quả đặc trưng được miêu tả ở hình 1.4. Hầu hết các nghiên cứu đã chỉ ra
rằng, từ trở tăng và Tc giảm cùng với sự giảm của rA [8].

7


Hình 1.4. Điện trở suất [R (T) / R (T = 300 K)] so với nhiệt độ cho
một loạt các mẫu của La0.7-xYxCa0.3MnO3 với x = 0; 0,07; 0,1; 0,15;
0,2 và 0,25. Liên kết Mn-O-Mn trở thành phi tuyến tính với giá trị Y
ngày càng tăng.
Rodruguez-Martinez và Attfield đã nghiên cứu cấu trúc đa tinh thể cơ bản của
La1-xCaxMnO3 với sự phân bố của các cation ở vị trí A. Họ đã sử dụng hai tham số: bán
kính trung bình rA : là đại lượng có liên quan tới trạng thái méo tĩnh và độ biến đổi 
2

 rA2  ra

2

: là đại lượng liên quan đến độ mất trật tự. Kết quả cho thấy rA luôn là

hằng số và bằng 1,20A, nhưng  2 biến đổi từ 0.0003Å tới 0.0090Å. Hầu hết đều trải
qua quá trình chuyển trạng thái kim loại - điện môi (hình 1.5).

8



Hình 1.5: Nhiệt độ phụ thuộc điện trở suất của mẫu đa tinh thể
La0.7M0.3MnO3. Vị trí Cation A có kích thước trung bình là 1,20Å [10].

1.3.

Trƣờng bát diện, sự tách mức năng lƣợng và trật tự quỹ đạo trong
trƣờng

tinh thể bát diện

Trong vật liệu Perovskite ABO3 tồn tại bát diện BO6. Trong hợp chất
LaMnO3 (khi B là Mangan) là bát diện MnO6. Các tính chất điện, từ của manganite
phụ thuộc rất mạnh vào vị trí của ion từ Mn (vị trí B). Từ cấu trúc tinh thể
Perovskite (hình 1.1) chúng ta có thể thấy 6 ion Ôxy mang điện tích âm ở đỉnh bát
diện và 1 ion kim loại chuyển tiếp Mn 3+ mang điện tích dương ở tâm bát diện. Một
cách gần đúng, lý thuyết trường tinh thể coi liên kết giữa ion trung tâm mang điện
tích dương và các ion Ôxy mang điện tích âm chỉ là tương tác tĩnh điện. Trường tĩnh
điện tạo bởi các ion Ôxy nằm ở đỉnh bát diện như hình 1.1 gọi là trường tinh thể bát
diện (octahedra field).

9


eg
2


t2g
Ion Mn tự do


a

b

c

Hình 1.6: Sự tách mức năng lượng của ion Mn3+
a: Dịch chuyển năng lượng do tương tác dipole.
b: Tách mức năng lượng trong trường tinh thể.
c: Tách mức Jahn - Teller.
Sự tách mức năng lượng và trường tinh thể bát diện gây ảnh hưởng đến trạng
thái của các điện tử d của các ion kim loại chuyển tiếp. Đối với một nguyên tử tự
do, các quỹ đạo có cùng số lượng tử n là suy biến và có cùng một mức năng lượng.
Tuy nhiên với hợp chất Perovskite, dưới tác dụng của trường tinh thể bát diện, các
quỹ đạo d của các kim loại chuyển tiếp được tách ra ở những mức năng lượng khác
nhau. Lớp vỏ 3d của nguyên tử kim loại chuyển tiếp Mn có số lượng tử quỹ đạo l =
2, số lượng tử từ m = 0; ±1; ±2 tức là có 5 hàm sóng quỹ đạo (5 orbital). Các quỹ
đạo này được kí hiệu là d z , d x
2

2

 y

2

, d xy , d yz và d xz . Do tính đối xứng của trường

tinh thể, các điện tử trên các quỹ đạo dxy, dyz, dxz chịu một lực đẩy của các ion âm
như nhau nên có năng lượng như nhau, còn các điện tử trên các quỹ đạo d z , d x 2  y

2

2

chịu cùng một lực đẩy nên cũng có cùng một mức năng lượng (hình 1.6).

Như vậy, trong trường tinh thể bát diện, các quỹ đạo d của các ion chuyển
tiếp được tách thành hai mức năng lượng. Mức năng lượng thấp hơn gồm các quỹ
đạo dxy, dyz và dxz gọi là quỹ đạo suy biến bậc 3 (t2g) và mức năng lượng cao hơn
gồm các quỹ đạo d z , dx 2  y2 gọi là quỹ đạo suy biến bậc 2 (eg) (hình 1.6). Do sự
2

10


tách mức như vậy, các điện tử có thể lựa chọn việc chiếm giữ các mức năng lượng
khác nhau t2g hay eg, điều này sẽ dẫn tới hiệu ứng méo mạng Jahn - Teller sẽ được
trình bày ở phần sau.
Bản chất của sự tách mức năng lượng này có thể giải thích như sau [13]:
Các quỹ đạo eg có hàm sóng:

d x y 
2

2

dz 
2

Hình 1.7: Hình dạng của các hàm sóng eg: (a) d x


2

 y

2

, (b) d z

2

Hình 1.8: Hình dạng của các hàm sóng t2g: (a) dxy, (b) dyz và (c) dzx
Các quỹ đạo điện tử này hướng về phía các ion âm Ôxy bao quanh các ion
kim loại chuyển tiếp được minh họa trong hình 1.7. Còn các quỹ đạo t 2g có hướng
dọc theo các đường chéo giữa các ion âm Ôxy như được minh họa trên hình 1.8. Do


11


đó mật độ điện tử trong các quỹ đạo e g định hướng dọc theo các ion âm Ôxy (hướng
theo các trục của hệ tọa độ xyz). Trong khi đó, các mật độ điện tử của các mức t 2g
lại tập trung theo phương ở giữa các ion âm Ôxy (hướng theo các đường phân giác
giữa các trục tọa độ). Như vậy, các quỹ đạo e g sẽ sinh ra lực đẩy Culông mạnh hơn
các quỹ đạo t2g đối với các ion âm Ôxy. Do đó, điện tử trên các quỹ đạo e g có mức
năng lượng cao hơn điện tử trên các quỹ đạo t2g. Hiệu giữa 2 mức năng lượng eg và
t2g chính là năng lượng tách mức trường tinh thể
 E e

Ở đây, phụ thuộc bản chất ion và độ dài liên kết giữa các ion (A - O) và (BO), góc (B - O - B) và đặc biệt là vào tính đối xứng của trường tinh thể.

1.4.

Hiệu ứng Jahn - Teller

Theo lý thuyết Jahn - Teller [18], một phân tử có tính đối xứng cấu trúc cao
với các quỹ đạo điện tử suy biến sẽ phải biến dạng để loại bỏ suy biến, giảm tính
đối xứng và giảm năng lượng tự do.

a) Méo kiểu I

b) Méo kiểu II

Hình 1.9: Méo mạng Jahn – Teller
Chưa méo
Sau khi méo
Hiệu ứng Jahn - Teller xảy ra trong một ion kim loại chứa số lẻ điện tử trong
mức eg. Xét trường hợp của ion Mn

3+

trong trường tinh thể bát diện có cấu trúc điện

12


4

từ 3d ( t 23g e1g ). Mức t 23g là suy biến bội 3 và chứa 3 điện tử, nên chỉ có một cách sắp

xếp duy nhất là mỗi điện tử nằm trên một quỹ đạo khác nhau. Tuy nhiên, mức e1g là

mức suy biến bội 2 nhưng lại chỉ có một điện tử nên sẽ có hai cách sắp xếp khả dĩ
là: d 12 d 02
zx



Nếu theo cách sắp xếp thứ nhất ( d 1z2 dx02  y2 ) thì lực hút tĩnh
điện giữa

ion ligan với ion Mn3+ theo trục z sẽ yếu hơn so với trên mặt phẳng xy, điều này sẽ
dẫn đến độ dài các liên kết Mn - O không còn đồng nhất như trong trường hợp
Perovskite lý tưởng: ta sẽ có 4 liên kết Mn - O ngắn trên mặt xy và 2 liên kết Mn O dài hơn dọc theo trục z. Ta gọi trường hợp này là méo mạng Jahn - Teller kiểu I
(hình1.10a).



Nếu theo cách sắp xếp thứ hai ( d 1x2  y 2 dz02 ) thì lực hút tĩnh điện

giữa các

ion ligan với ion Mn3+ theo trục z sẽ mạnh hơn so với trên mặt phẳng xy. Trong
trường hợp này, có 4 liên kết Mn - O dài trên mặt phẳng xy và 2 liên kết Mn - O
ngắn hơn trên trục z. Trường hợp này gọi là méo mạng Jahn - Teller kiểu II (hình
1.10b).
Như vậy, méo mạng Jahn - Teller sẽ biến cấu trúc lập phương lý tưởng thành
các cấu trúc dạng trực giao. Nó là hiệu ứng vi mô nên khi quan sát vĩ mô ta sẽ
không thấy được các méo mạng này. Đồng thời, do liên kết đàn hồi giữa các vị trí
méo mạng mà hiện tượng méo mạng thường mang tính tập thể.
Nếu trong vật liệu chỉ tồn tại một trong hai kiểu méo mạng thì ta gọi là hiện
tượng méo mạng Jahn - Teller tĩnh và là hiện tượng méo mạng Jahn - Teller động

nếu trong vật liệu tồn tại cả hai kiểu méo mạng trên, vì chúng có thể chuyển đổi qua
lại lẫn nhau [21].
Lý thuyết Jahn - Teller không chỉ ra được trong hai kiểu méo mạng trên kiểu
nào sẽ xảy ra, không tiên đoán được cường độ của sự biến dạng mà chỉ cho thấy
méo mạng sẽ làm giảm năng lượng của hệ. Chính vì thế, các điện tử bị định xứ


13


trong ô mạng cơ sở và do đó làm giảm tương tác sắt từ.
Những quan sát thực nghiệm trên các phép đo khác nhau đều cho thấy sự tồn tại
của hiệu ứng Jahn - Teller có liên quan trực tiếp đến sự định xứ của điện tử e g của ion
3+

Mn . Do ion Mn

4+

chỉ có 3 điện tử định xứ t 2g nên không bị ảnh hưởng bởi hiệu ứng

Jahn - Teller. Hiện tượng méo mạng có ảnh hưởng rất lớn đến cường độ của các tương
tác, đặc biệt là tương tác trao đổi kép và do đó ảnh hưởng rất mạnh lên các tính chất vật
lý của các vật liệu manganite. Hiệu ứng Jahn - Teller đóng vai trò quan trọng trong việc
giải thích tính chất từ, tính chất dẫn của vật liệu Perovskite và đặc biệt là hiệu ứng trật
tự điện tích (CO) trong các Perovskite manganite.

1.5.

Trạng thái spin và cấu hình spin của các điện tử lớp d trong trƣờng

tinh thể bát diện BO6
Như chúng ta đã biết, từ nội dung của quy tắc Hund, nếu số điện tử trên một

lớp quỹ đạo không lớn hơn số quỹ đạo suy biến trong cùng một mức năng lượng thì
các điện tử được phân bố riêng rẽ trên các quỹ đạo này ứng với giá trị cực đại của
tổng spin S (tương ứng với trạng thái spin cao - high spin). Các điện tử có khuynh
hướng phân bố trên các quỹ đạo khác nhau là vì giữa các điện tử có lực đẩy tương
hỗ và do đó sự ghép cặp các điện tử vào cùng một quỹ đạo (tương ứng với trạng thái
spin thấp - low spin) đòi hỏi phải cung cấp một năng lượng nào đó gọi là năng
lượng ghép cặp P. Sự phụ thuộc của năng lượng toàn phần E, P và  vào trạng thái
spin của các điện tử được mô tả bởi hình 1.10

14


a) Trạng thái spin cao
b) Trạng thái spin thấp
(HS – High spin)

(LS – Low spin)

E   E o   Eo 

E   E o   E o  P

Hình 1.10: Sự phụ thuộc của năng lượng toàn phần E, P và  vào trạng thái
spin của các điện tử.
Sự sắp xếp cấu hình điện tử của các điện tử sẽ được thực hiện theo khả năng
có lợi về mặt năng lượng:


+

+

Nếu 2Eo +  < 2Eo + P hay  < P ta có trạng thái spin cao - HS.

+

Nếu 2Eo +  > 2Eo + P hay  > P ta có trạng thái spin thấp - LS.

Nếu  = P hay trạng thái LS và trạng thái HS có cùng một mức năng lượng

và do đó khả năng sắp xếp các điện tử là như nhau cho cả hai trạng thái.
Sự sắp xếp các điện tử trên các mức năng lượng suy biến và trạng thái spin
của các ion kim loại chuyển tiếp thuần tuý suy luận từ các khả năng có thể có được,
được thể hiện như hình 1.11.

15


t2g1eg0

t2g2eg0
Các cấu hình d1, d2, d3 và d8, d9, d10

t

3

e1


2g

t

4
2g

(HS)
g

e2

(HS)
g

Các cấu hình d4 ,d5, d6, d7 trong trường bát diện
Hình 1.11: Sự sắp xếp các điện tử trên các mức năng lượng suy biến
và trạng thái spin.
Ta thấy rằng, đối với các cấu hình d1, d2, d3 và d8, d9, d10 chỉ có một cách sắp
xếp các điện tử. Tuy nhiên sự sắp xếp các điện tử trở nên thú vị hơn đối với các cấu
hình d4, d5, d6, d7 khi mỗi cấu hình có hai trạng thái spin: trạng thái spin thấp LS và
trạng thái spin cao HS. Trên thực tế, ngoài các trạng thái LS và HS còn xuất hiện
trạng thái trung gian (IS) trong một số hợp chất có cấu trúc Perovskite.
1.6.

Tƣơng tác siêu trao đổi (Super exchange - SE)

Tương tác trao đổi của các ion kim loại thông qua ion trung gian nào đó là
tương tác trao đổi gián tiếp. Nếu ion trung gian là ion Ôxy gọi là tương tác “Siêu

trao đổi”. Thường có ở hợp chất ôxit từ [11].

16


×