Tải bản đầy đủ (.pdf) (67 trang)

NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO HIỆU QUẢ VẬN HÀNH HỆ THỐNG ẮC QUY TRÊN TÀU HẢI QUÂN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.42 MB, 67 trang )

ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA

---------------------------------------

LÊ XUÂN CHÂU

NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO HIỆU QUẢ
VẬN HÀNH HỆ THỐNG ẮC QUY TRÊN TÀU HẢI QUÂN

LUẬN VĂN THẠC SĨ
KỸ THUẬT ĐIỆN

Đà Nẵng – Năm 2017


ĐẠI HỌC ĐÀ NẴNG
TRƢỜNG ĐẠI HỌC BÁCH KHOA

---------------------------------------

LÊ XUÂN CHÂU

NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO HIỆU QUẢ
VẬN HÀNH HỆ THỐNG ẮC QUY TRÊN TÀU HẢI QUÂN

Chuyên ngành: KỸ THUẬT ĐIỆN
Mã số: 60.52.50

LUẬN VĂN THẠC SĨ


NGƢỜI HƢỚNG DẪN KHOA HỌC:
TS. Trịnh Trung Hiếu

Đà Nẵng – Năm 2017


LỜI CAM ĐOAN
Tơi xin cam đoan đây là cơng trình nghiên cứu của riêng tôi.
Các số liệu, kết quả nêu trong luận văn là trung thực và chưa từng được ai
cơng bố trong bất kỳ cơng trình nào khác.
Ký tên

Lê Xuân Châu


MỤC LỤC
MỞ ĐẦU ......................................................................................................................... 1
I. Lý do chọn đề tài (Tính cấp thiết của đề tài) ............................................................... 1
II. Mục đích nghiên cứu ................................................................................................. 1
III. Ðối tƣợng và Phạm vi nghiên cứu ............................................................................. 2
IV. Phƣơng pháp nghiên cứu ........................................................................................... 2
V. Ý nghĩa khoa học và thực tiễn .................................................................................... 2
VI. Cấu trúc của luận văn: ............................................................................................... 2
Chƣơng 1: NHỮNG NỘI DUNG CƠ BẢN VỀ ẮC QUY TRÊN TÀU HẢI QUÂN.... 3
1.1. Lịch sử hình thành và phát triển AQ axít ................................................................. 3
1.2. Cơng dụng và cấu tạo AQ axít. ................................................................................ 3
1.2.1. Cơng dụng.............................................................................................................. 3
1.2.2. Cấu tạo AQ axít ..................................................................................................... 4
1.3. Phân loại ắc quy. ....................................................................................................... 5
1.4. Nguyên lý làm việc chung của ắc quy. ..................................................................... 5

1.4.1. Quá trình nạp điện của ắc quy ............................................................................... 5
1.4.2. Q trình phóng điện của ắc quy ........................................................................... 6
1.5. Các thông số của ắc quy. .......................................................................................... 7
1.5.1. Các thông số chung của ắc quy ............................................................................. 7
1.5.2.Các thông số cơ bản của AQ trên tàu Hải quân ..................................................... 9
1.6. Cách đấu nối và đặc tính phóng nạp của ắc quy. ................................................... 12
1.6.1. Đặc tính nạp của ắc quy....................................................................................... 12
1.6.2. Quy trình phóng xả của ắc quy. ........................................................................... 12
1.7. Các quy tắc khai thác AQ trên tàu Hải quân .......................................................... 14
1.7.1. Dấu hiện nạp no của ắc quy ................................................................................. 14
1.7.2. Dấu hiệu phóng điện của ắc quy.......................................................................... 15
1.7.3. Nối mát ................................................................................................................ 15
1.7.4. Nhiệt độ ............................................................................................................... 15
1.7.5. Bổ sung nƣớc cất ................................................................................................. 15
1.7.6. Đo điện áp ............................................................................................................ 15
1.7.7. Tháo dây điện đấu với các điện cực .................................................................... 15
1.7.8. Đo tỷ trọng dung dịch điện phân ......................................................................... 16
1.7.9. Pha chế dung dịch điện phân ............................................................................... 16
1.7.10. Quy tắc an toàn: ................................................................................................. 16
1.7.11. Những hƣ hỏng của bộ AQ................................................................................ 16
1.8. Đề xuất thông số chung của bộ xả cho hệ thống AQ ............................................. 17
1.9. Kết luận chƣơng ..................................................................................................... 18
Chƣơng 2: CÁC GIẢI PHÁP THU HỒI NĂNG LƢỢNG TỪ HỆ THỐNG AQ ........ 19
2.1. Các dạng chuyển hóa năng lƣợng từ AQ. .............................................................. 19


2.1.1. Chuyển hóa năng lƣợng thành nhiệt năng để chƣng cất nƣớc biển..................... 19
2.1.2. Trả năng lƣợng về nguồn bằng phƣơng pháp nghịch lƣu. .................................. 19
2.1.3. Chuyển hóa năng lƣợng thành cơ năng quay máy phát điện nạp cho các hệ thống
AQ khác. ........................................................................................................................ 20

2.1.4. So sánh các phƣơng pháp thu hồi năng lƣợng từ AQ. ......................................... 21
2.2. Lựa chọn và tính tốn các phần tử bộ DC/DC ....................................................... 22
2.2.1. Giới thiệu tổng quan về các bộ biến đổi DC/DC có cách ly ............................... 23
2.2.2. So sánh các mạch DC/DC có cách ly và đề xuất sơ đồ phù hợp ......................... 29
2.3. Tổng quan về mạch DAB ....................................................................................... 31
2.3.2. Nguyên lý làm việc của mạch DAB .................................................................... 35
2.3.3. Phƣơng án đề xuất mạch chuyển đổi DC/DC cho hệ thống xả AQ .................... 36
2.4. Các thông số đƣợc truyền qua mạch. ..................................................................... 38
2.4.1. Cơng suất truyền qua mạch ................................................................................. 38
2.4.2. Dịng điện đầu ra của mạch DAB ....................................................................... 38
2.4.3. Các tổn hao trong mạch DAB ............................................................................ 40
2.5. Kết luận chƣơng ..................................................................................................... 41
Chƣơng 3: TÍNH TỐN THIẾT KẾ HỆ THỐNG THU HỒI NĂNG LƢỢNG TỪ HỆ
THỐNG ẮC QUY. ........................................................................................................ 42
3.1. Tính chọn các phần tử chủ động trong hệ thống. ................................................... 42
3.1.1. Tính chọn điện cảm rị. ........................................................................................ 42
3.1.2. Tính chọn IGBT .................................................................................................. 43
3.1.3. Tính chọn tối ƣu mạch DAB ............................................................................... 45
3.2. Tính tốn thiết kế mạch điều khiển. ....................................................................... 47
3.2.1. Sơ đồ nguyên lý chung của bộ điều khiển hệ. ..................................................... 47
3.2.2. Xây dựng mơ hình điều khiển trong phần mềm MATLAB ................................ 48
3.3. Mạch mô phỏng đề xuất. ........................................................................................ 49
3.4. Các kết quả mơ phỏng trong Matlab. ..................................................................... 50
3.5. Tính toán hiệu quả của hệ thống và kết luận .......................................................... 52
3.5.1. Tính tốn giá thành cho bộ chuyển đổi DC-DC DAB ........................................ 52
3.5.2. Tính tốn lƣợng tiêu hao nhiên liệu cho mỗi kW điện. ....................................... 53
3.6. Kết luận chƣơng ..................................................................................................... 54
KẾT LUẬN VÀ HƢỚNG PHÁT TRIỂN .................................................................... 55
Danh mục tài liệu tham khảo ......................................................................................... 57



NGHIÊN CỨU ĐỀ XUẤT GIẢI PHÁP NÂNG CAO HIỆU QUẢ
VẬN HÀNH HỆ THỐNG ẮC QUY TRÊN TÀU HẢI QUÂN
Học viên: Lê Xuân Châu

Chuyên ngành: Kỹ thuật điện

Mã số:

Trƣờng Đại học Bách khoa - ĐHĐN

60.52.50

Khóa: 31

Tóm tắt – Vận hành hiệu quả ắc quy trên tàu Hải quân là yêu cầu cấp thiết trong hoạt
động của tàu quân sự. Quá trình xả năng lƣợng từ ắc quy và tái tạo nguồn năng lƣợng
này là giải pháp tiết kiệm năng lƣợng và giảm chi phí trong q trình vận hành của các
tổ hợp ắc quy. Hƣớng nghiên cứu đã đề cập đến nhiều dạng biến đổi năng lƣợng nhƣ
hóa hơi nƣớc biển chƣng cất nƣớc cất, trả năng lƣợng về lƣới và cung cấp cho động cơ
DC lai máy phát điện xoay chiều thơng qua bộ chuyển đổi DC-DC có cách ly DAB
(Dual Active Bridge). Qua nghiên cứu hƣớng đề xuất là thơng qua bộ chuyển đổi DAB
một giải pháp an tồn và hiệu quả cho hệ thống, nó có thể biến đƣợc nguồn năng lƣợng
hao phí trong q trình xả ắc quy thành nguồn năng lƣợng có thể nạp lại cho các hệ
thống ắc quy khác khi giữa chế độ nạp và xả của hai hệ thống ắc quy khác nhau. Thơng
qua chuyển đổi DAB có thể điều chỉnh đƣợc hƣớng cơng suất và ổn định dịng điện xả
và điện áp của mạch nhằm cấp cho động cơ DC lai máy phát giá trị đạt đƣợc của toàn
bộ điện áp 256V và dịng điện đầu ra 800-850A. Q trình tính tốn cho thấy cần chia
nhỏ các mạch DAB thành các mạch nhỏ để tính tốn với mục đích đảm bảo cho mạch
dễ làm mát và chịu đƣợc khả năng làm việc ở điều kiện cơng suất mạch lớn. Tác giả đã

tóm tắt các kết quả đạt đƣợc và đƣa ra các hƣớng phát triển tiếp theo thực tế tại đơn vị.
Từ khóa – bộ chuyển đổi DC-DC, DAB , điện cảm rị, tính chọn IGBT, ắc quy axít.

RESEARCH PROPOSED PROPOSAL TO ENSURE THE EFFICIENT
OPERATION OF BATTERIES SYSTEM IN THE NAVAL SHIPS
Abstract - Effective operation of batteries on naval ships is an urgent requirement in the
operation of military mission. The process of discharging energy from batteries and this
power source is a way to save energy and reduce costs during the operation of batteries
system. Research has addressed a variety of energy transformations, such as the
distillation of distilled water, the return of grid energy, and the supply of DC hybrid DC
generators via the DC-DC converter. DAB (Dual Active Bridge) isolated. Through the
proposed research, through the DAB converter, a safe and effective solution for the
system, it can transform the energy wasted in the discharge of batteries into
rechargeable energy sources. The other batteries system when between the charging and
discharging modes of two different batteries systems. Through the DAB converter, it is
possible to adjust the power direction and stabilize the discharge current and voltage of
the circuit to provide the DC motor with a DC generator which achieves a total voltage
of 256V and an output current of 800- 850A. The calculation shows that the DAB
circuits need to be broken up into small circuits for calculations with the aim of
ensuring that the circuit is easy to cool and able to withstand high-power conditions.
The author has summarized the results achieved and set forth the actual development
direction in the Navy Force.
Key words – DC-DC converter, DAB, inductances leakage, selecting IGBT, acid batteries


CÁC LOẠI DANH MỤC
a) Danh mục các ký hiệu, các chữ viết tắt
CÁC KÝ HIỆU:
E
Sức điện động (V)

U
I

Điện áp (V)
Dòng điện (A)

f
P
t

Tần số (Hz)
Công suất tác dụng (W)
Thời gian (s)

T
ρ

Chu kỳ (s-1)
Tỷ trọng dung dịch axít (g/cm3)

C
Tụ điện
L
Cuộn cảm
CÁC CHỮ VIẾT TẮT
AQ
Ắc quy
ĐTCS
Điện tử công suất
MFĐ

Máy phát điện
DC
Nguồn điện một chiều
AC
Nguồn điện xoay chiều
b) Danh mục các bảng
Số hiệu bảng

Tên bảng

Trang

2.1

Bảng so sánh cấu trúc có cách ly và khơng có cách ly

23

2.2

So sánh giá trị điện áp đặt lên các khóa điều khiển.

29

2.3

So sánh số lƣợng thiết bị của các mạch

30


2.4

Tổng kết so sánh thông số của các mạch

30

3.1

Giá trị góc lệch để dịng điện đầu ra cực đại

43

3.2

Các thơng số đặc trƣng của IGBT

44

3.3

Thơng số tính tốn tổn thất của mạch DAB

45

3.4

Bảng giá thành các thiết bị

52


c) Danh mục các hình vẽ và đồ thị
Số hiệu hình vẽ

Tên hình vẽ

Trang

1.1

Cấu tạo cơ bản của AQ axít

4

1.2

Minh họa q trình điện hóa xảy ra khi nạp AQ axít

6


Số hiệu hình vẽ

Tên hình vẽ

Trang

1.3

Minh họa q trình phóng của AQ axít


6

1.4

Biểu đồ thay đổi điện dung của AQ khi phóng (AQ
100Ah)

8

1.5

Cấu tạo của ắc quy

11

1.6

Đặc tính điện áp và tỷ trọng của AQ khi phóng và nạp
với dịng điện khơng đổi

12

1.7

Đặc tính phóng nạp của ắc quy

13

1.8


Đặc tính phóng điện tới mức điện áp tối thiểu cho phép

13

1.9

Dung lƣợng định mức của AQ dựa trên mức 8 giờ

14

1.10

Chu kỳ phóng điện của AQ ở C20

14

1.11

Đƣờng đặc tính xả (I,U) của một tổ hợp AQ

18

2.1

Mơ hình động cơ DC lai máy phát điện xoay chiều
thông qua bộ chỉnh lƣu nạp cho AQ

20

2.2


Sơ đồ bốn chế độ nạp cho AQ ở chế độ nạp bổ sung

20

2.3

Sơ đồ dùng động cơ DC lai máy phát điện xoay chiều

22

2.4

Sơ đồ cấu trúc của mạch Flyback

24

2.5

Sơ đồ cấu trúc mạch Forward

26

2.6

Giản đồ nguyên lý mạch Forward

26

2.7


Sơ đồ cấu trúc mạch Half Bridge

27

2.8

Giản đồ cấu trúc mạch Half Bridge

27

2.9

Giản đồ nguyên lý mạch DAB

28

2.10

Sơ đồ cấu trúc mạch DAB

28

2.11

Modul IGBT Mitsubishi với Umax 3300V, Imax 1200A

31

2.12


Cấu tạo (a), mạch tƣơng đƣơng (b), đặc tính V-A (c)
của IGBT

32

2.13

Sơ đồ thử nghiệm khóa IGBT

33

2.14

Q trình mở IGBT

34

2.15

Q trình khóa IGBT

34

2.16

Vùng làm việc an tồn của IGBT

35



Số hiệu hình vẽ

Tên hình vẽ

Trang

2.17

Cấu trúc mạch DAB

36

2.18

Giản đồ xung làm việc của IGBT

36

2.19

Sơ đồ bộ chuyển đổi DC/DC cho hai tổ hợp AQ dùng
IGBT

37

2.20

Sơ đồ của một nhánh của bộ chuyển đổi DC/DC


38

2.21

Điện áp sơ cấp, thứ cấp MBA và dòng điện qua điện
cảm rò Lk

38

3.1

Biểu đồ dòng điện đầu ra Io thay đổi theo góc lệch pha
φ, tƣơng ứng với các giá trị điện cảm rò Lk= 1,...,6H

43

3.2

Dòng điện cực đại (Imax) qua điện cảm rò của MBA

44

3.3

Biểu đồ hiệu suất của mạch DAB thay đổi theo điện áp
ra V0

46

3.4


Hiệu suất của nhiều mạch nhánh

46

3.5

Sơ đồ khối bộ điều chỉnh

48

3.6

Sơ đồ cấu trúc chung của mạch điều khiển

48

3.7

Sơ đồ cấu trúc khối tính tốn thời gian trễ

49

3.8

Sơ đồ cấu trúc của một nhánh chịu dòng tải 100A,
256V

49


3.9

Nguồn mơ phỏng là dạng AQ axít trong Matlab

49

3.10

MBA cách ly trong Matlab

49

3.11

Điện tử công suất IGBT trong Matlab

50

3.12

Động cơ DC kích từ độc lập trong Matlab

50

3.13

Điện áp hai đầu vào cuộn dây MBA, 256V

50


3.14

Dòng điện rò đi qua cuộn dây MBA, 86A

50

3.15

Điện áp (màu xanh), dòng điện rò (màu vàng) qua
cuộn dây MBA

51

3.16

Dòng điện đầu ra của bộ DAB trong khoảng thời gian
0,0183s

51


1
MỞ ĐẦU
I. Lý do chọn đề tài (Tính cấp thiết của đề tài)
Trong lực lƣợng của Hải quân hiện nay đã biên chế một số chủng loại tàu có sử
dụng ắc quy (AQ) là nguồn năng lƣợng chính cho hệ thống năng lƣợng trên tàu. Thông
thƣờng tuổi thọ của AQ có giới hạn từ 2 -5 năm tùy theo chế độ khai thác sử dụng và
bảo quản. Với quá trình hoạt động và bảo dƣỡng AQ cho các tàu quân sự phải tuân thủ
nghiêm các cơ chế và quy trình, với những yêu cầu trên cho thấy năng lƣợng xả của tổ
hợp AQ là một nguồn năng lƣợng rất lớn, tái tạo nguồn năng lƣợng này là một đòi hỏi

cần thiết trong nhiệm vụ quốc phòng hiện nay. Nhằm tiết kiệm tối đa nguồn tài nguyên
có sẵn và giảm chi phí cho phục vụ quốc phịng. Các AQ trên tàu trên tàu gồm hai tổ
hợp mắc song song với nhau, mỗi tổ hợp gồm 120 cái mắc nối tiếp với nhau, mỗi AQ
có cơng suất tối đa là 11,5kW. Một trong những yêu cầu bắt buộc là định kỳ 3 tháng
mỗi tổ hợp AQ trên các tàu cần phải xả sâu để giải phóng các điện tử bám trên các cực
của AQ tránh hiện tƣợng sunfat hóa các điện cực, đây là một hoạt động bắt buộc để
tránh hiện tƣợng dung lƣợng ảo của AQ khi hoạt động lâu dài. Khi phóng xả AQ trên
tàu theo quy định giá trị dòng điện đầu ra dao động từ 800 – 850A và dịng điện này
đƣợc duy trì trong suốt thời gian là 20h. Khi xả thì tàu yêu cầu phải đậu tại cảng, hiện
nay để xả nguồn năng lƣợng cho AQ bằng cách sử dụng hai động cơ đẩy chân vịt dƣới
tàu quay ngƣợc nhau và đốt nóng nƣớc biển thơng qua các tấm bản cực sau đó xả lại
xuống biển. Với các phƣơng án hiện nay có nhiều bất cập nhƣ nếu một trong các động
cơ đang xả bị dừng thì tàu sẽ bị trơi dạt hoặc đâm va hơn nữa tuổi thọ của các động cơ
sẽ giảm số giờ phục vụ, với phƣơng án đốt nóng nƣớc biển thì do dòng xả lớn nên điện
cực bị ăn mòn rất nhanh và mỗi lần xả là mỗi lần thay điện cực rất tốn kém. Cả hai
phƣơng án hiện nay đang sử dụng thì nguồn năng lƣợng này đƣợc xem là nguồn năng
lƣợng hao phí khơng tái tạo.
Do đó, với mong muốn sử dụng chính nguồn năng lƣợng này tái tạo thành dạng
năng lƣợng khác phù hợp để nạp lại các tổ hợp AQ khác dƣới tàu, bằng cách là chuyển
hóa nguồn năng lƣợng xả với dịng điện đầu ra khơng đổi thơng qua bộ biến đổi DCDC có thể điều chỉnh điện áp và dòng điện cấp cho động cơ DC lai MFĐ để nạp cho
các tổ hợp AQ khác trên tàu. Hiện nay để nạp cho các AQ tại bến đều sử dụng nguồn
năng lƣợng chính là máy phát – diesel, với mục đích là tận dụng các trang thiết bị sẵn
có tại đơn vị.
II. Mục đích nghiên cứu
Nghiên cứu đề xuất và thực hiện giải pháp thu lại năng lƣợng từ quá trình xả
của hệ thống AQ dựa trên bộ biến đổi điện tử công suất lớn nhằm chuyển hoá nguồn


2
năng lƣợng phóng xả của AQ một chiều thành nguồn điện DC có cấp điện áp khác cấp

cho động cơ DC lai MFĐ xoay chiều 3 pha.
III. Ðối tƣợng và Phạm vi nghiên cứu
Tổ hợp AQ trên tàu.
Bộ chuyển đổi điện tử công suất lớn DC-DC.
IV. Phƣơng pháp nghiên cứu
Sử dụng các số liệu thực tế của các tổ hợp AQ trong quá trình làm việc trên tàu
Hải quân kết hợp với mơ phỏng bằng phần mềm Matlab để tính toán thiết kế hệ thống
thu hồi năng lƣợng cho phù hợp.
V. Ý nghĩa khoa học và thực tiễn
Ứng dụng vào thực tế cho các đơn vị Hải quân để tận dụng tối đa nguồn nguồn
năng lƣợng có sẵn nhằm tiết kiệm năng lƣợng.
VI. Cấu trúc của luận văn:
Luận văn có tổng cộng là 03 chƣơng bao gồm:
Chƣơng 1: Tổng quan về hệ thống AQ và quy trình làm việc của nó trên các tàu
Hải quân.
Chƣơng 2: Nghiên cứu về các dạng của bộ chuyển đổi năng lƣợng từ AQ nhằm
tìm ra bộ chuyển đổi phù hợp và hiệu quả trong q trình làm việc.
Chƣơng 3: Tính chọn các phần tử của bộ chuyển đổi và mơ phỏng q trình làm
việc của nó trên phần mềm MATLAB.
Kết luận và hƣớng phát triển


3
Chƣơng 1: NHỮNG NỘI DUNG CƠ BẢN VỀ ẮC QUY TRÊN TÀU
HẢI QUÂN.
1.1. Lịch sử hình thành và phát triển AQ axít
Đầu năm thập niên 60 của thế kỷ 19 AQ chì axít đƣợc phát minh bởi Gaston
Plante, một nhà vật lý ngƣời Pháp. AQ khi đó bao gồm hai dải băng kẹp giữa hai tấm
chì và cuộn lại thành một dạng hình trụ. AQ đó đã có thể nạp và xả trong axít sunfuric
lỗng đƣợc nhiều lần, nó bao gồm một điện cực dƣơng là chì oxit và một điện cực âm

là chì nguyên chất.
Trong thập niên 80 của thế kỷ 19, AQ điện cực dán đã đƣợc phát minh bởi
Camille Faure, một kỹ sƣ ngƣời Pháp, sau đó phát triển lên thành một dạng chì
antimon hợp kim lƣới với trọng lƣợng nhẹ dàng và dễ dàng vận chuyển hơn. Tại Nhật
Bản vào năm 1895, Genzou Shimadzu, thế hệ thứ hai của Tổng công ty Shimadzu, lần
đầu tiên đã sản xuất thành công với nguyên mẫu của một AQ có khả năng tích trữ,
đánh dấu sự khởi đầu của sản xuất. Từ cuối thế kỷ 19 đến đầu thế kỷ 20 AQ dung
lƣợng cao đƣợc sử dụng các thiết bị di động, hoặc xe điện. Trong những năm 1930,
AQ sử dụng đệm thuỷ tinh và điện cực phủ đã đƣợc thƣơng mại hóa và sử dụng nhiều
trong ngành cơng nghiệp ơ tơ.
Trong những năm 1950 và sau đó, với sự phát triển của cơ giới hóa ở Nhật Bản,
nhu cầu về AQ ô tô đã tăng đáng kể, và sau năm 1970, bộ chuyển đổi dùng điện tử
công suất từ nguồn AQ xuất hiện thì nó đã đƣợc ứng dụng nhiều cho các thiết bị cầm
tay có cơ hội phát triển. Với công nghệ ngày này cho phép chế tạo các dạng AQ với
dung lƣợng và kích cỡ khác nhau đã giúp cho các ngành phát triển vƣợt bậc và là một
bộ phận không thể thiết trong các ngành cơng nghiệp và dịch vụ có thể là nguồn dự
trữ, nguồn khởi động của các máy móc và cũng cịn là một nguồn năng lƣợng chính
cung cấp cho các thiết bị làm việc.
1.2. Cơng dụng và cấu tạo AQ axít
1.2.1. Công dụng
AQ là nguồn năng lƣợng điện một chiều mà trong nó ban đầu diễn ra sự tích luỹ
năng lƣợng bằng cách biến đổi năng lƣợng điện một chiều thành năng lƣợng hố học,
và sau đó trả lại nguồn năng lƣợng này bằng cách biến đổi ngƣợc lại từ năng lƣợng
hố học thành năng lƣợng điện. Khi phóng điện, các phản ứng hóa học chuyển thành
điện năng và ngƣợc lại khi nạp điện, điện năng sẽ chuyển sang năng lƣợng hóa học.
Q trình này xảy ra trong dung dịch điện điện phân giữa hai cực, đƣợc gọi là pin điện
hóa. Để tăng điện áp, bộ AQ gồm nhiều pin điện hóa ghép nối tiếp nhau.


4

1.2.2. Cấu tạo AQ axít
Bình AQ đƣợc chia thành nhiều ngăn, thông thƣờng là 6 ngăn. Mỗi ngăn AQ
đơn cho điện áp đầu ra là 2,14V.
Vỏ bình AQ đƣợc chế tạo bằng vật liệu cứng có tính chịu axít, chịu nhiệt, do đó
mà ngƣời ta đúc bằng nhựa cứng hoặc ebonite. Phía trong vỏ bình có các vách ngăn để
tạo thành các ngăn riêng biệt, mỗi ngăn riêng biệt gọi là một AQ đơn. Dƣới đáy bình
ngƣời ta làm hai yên đỡ gọi là yên đỡ bản cực. Mục đích là để các bản cực tỳ lên đó,
tránh bị ngắn mạch khi trong đáy bình có lắng đọng các cặn bẩn.
Bản cực đƣợc làm từ hợp kim chì và antimon (antimon chiếm khoảng 6 – 8%),
trên mặt bản cực có gắn các xƣơng dọc và xƣơng ngang để tăng độ cứng vững và tạo
ra các ơ cho chất hoạt tính bám trên bản cực.
Nếu bản cực dƣơng thì chất hoạt tính để phủ vào khung ơ trên bản cực là oxit chì
(PbO2). Nếu bản cực dùng làm bản cực âm thì chất hoạt tính đƣợc sử dụng là chì xốp
(Pb). Dung dịch điện phân dung trong AQ thƣờng là hỗn hợp axít sunfuric H2SO4
đƣợc pha chế theo tỷ lệ nhất định với nƣớc cất.
Khi AQ hoạt động chất hoạt tính tham gia đồng thời vào các phản ứng hoá học
càng nhiều càng tốt, do đó để tăng bề mặt tiếp xúc của các chất hoạt tính với dung dịch
điện phân, ngƣời ta chế tạo chất hoạt tính có độ xốp, đồng thời đem ghép những tấm
cực cùng tên song song với nhau thành một chùm cực ở trong mỗi ngăn của AQ đơn.
Chùm bản cực dƣơng và chùm bản cực âm đƣợc lồng xen kẽ nhau nhƣng giữa
hai bản cực khác tên lại đƣợc đặt thêm một tấm cách, tấm cách đƣợc làm từ chất cách
điện để cách điện giữa hai bản cực nhƣ nhựa xốp, thuỷ tinh hay gỗ.
Phần nắp của AQ để che kín những bộ phận bên trong bình, ngăn ngừa bụi và
các vật khác từ bên ngoài rơi vào bên trong, đồng thời giữ cho dung dịch điện phân
khơng bị tràn ra ngồi. Trên nắp bình có các lỗ để đổ và kiểm tra dung dịch điện phân,
các lỗ này đƣợc nút kín bằng các nút có lỗ thơng hơi. Ở một số loại AQ lỗ thơng hơi
có thể đƣợc chế tạo riêng biệt.

Hình 1.1. Cấu tạo cơ bản của AQ axít



5
Để đảm bảo về độ kín của bình AQ, xung quanh mép của nắp AQ và xung
quanh các lỗ cực đầu ra, ngƣời ta thƣờng trát nhựa chuyên dụng.
Kết cấu của thùng có khả năng ngăn dung dịch trào ra ngồi khi góc nghiêng
trong thời gian ngắn đến 500C đối với chiều rộng và đến 550C đối với chiều dài.
1.3. Phân loại ắc quy
Cách phân loại theo môi chất làm việc AQ chia thành AQ axít và AQ kiềm.
- AQ axít là AQ dùng axít làm chất điện mơi thƣờng là axít sunfuarit H2S04
(nồng độ lỗng).
- AQ kiềm thƣờng dùng dung dịch kiềm làm chất điện môi thƣờng là KOH
hoặc NaOH.
- Theo đặc tính của AQ axít:
+ AQ chì – axít lỏng;
+ AQ khơng cần bảo trì: Giống AQ chì – axít lỏng đƣợc đặt trong hộp kín;
+ AQ chu kỳ sâu: Là loại có các điện cực dày và tỷ trọng lớn;
+ AQ gel.
1.4. Nguyên lý làm việc chung của ắc quy
1.4.1. Quá trình nạp điện của ắc quy
Khi AQ đã đƣợc lắp ráp xong, ta đổ dung dịch axít sunfuric vào các ngăn bình
thì trên các bản cực sẽ sinh ra lớp mỏng chì sunfat (PbSO4). Vì chì tác dụng với axít
theo phản ứng:

PbO  H 2SO4  PbSO4  H 2O
Đem nối nguồn điện một chiều vào hai đầu cực của AQ thì dịng điện một chiều
đƣợc khép kín qua mạch AQ và dịng điện đi theo chiều: Cực dƣơng của nguồn một
chiều → Dung dịch điện phân → Đầu cực 2 của AQ → Cực âm của nguồn một chiều.
Dòng điện một chiều sẽ làm cho dung dịch điện phân phân ly:

H 2SO4  2H   SO24 

Cation H+ theo dịng điện đi về phía bản cực nối với âm nguồn điện và tạo
thành phản ứng tại đó:

2H   PbSO4  H 2SO4
Các anion SO24 chạy về phía chùm bản cực nối với dƣơng nguồn điện và cũng
tạo thành phản ứng tại đó:

PbSO4  H 2O  SO42  PbO2  2H 2SO4
Kết quả là ở bản cực nối với dƣơng nguồn điện có PbO2 và ở chùm bản cực kia
có chì Pb, nhƣ vậy ở hai chùm bản cực đã có sự khác nhau về cực tính.


6
Bộ nạp
O2

H2

Bộ nạp

H2SO4
H2O

H2O

Trọng lƣợng
riêng
PbO2
PbSO4


Pb
PbSO4

Hình 1.2. Minh họa quá trình điện hóa xảy ra khi nạp AQ axít
Từ các phản ứng hóa học trên ta thấy q trình nạp điện đã tạo ra lƣợng axít
sunfuric bổ sung vào dung dịch điện phân, đồng thời trong q trình nạp điện dịng
điện cịn phân tích ra trong dung dịch điện phân khí hydro (H2) và oxy (O2), lƣợng khí
này sủi lên nhƣ bọt nƣớc và bay đi, do đó nồng độ của dung dịch điện phân trong quá
trình nạp điện đƣợc tăng lên.
AQ đƣợc coi là đã nạp đầy khi quan sát thấy dung dịch sủi bọt đều (gọi đó là
hiện tƣợng sơi). Lúc đó ta có thể ngắt nguồn nạp và xem nhƣ q trình nạp điện cho
AQ đã hồn thành.
Khi điện áp bắt đầu tăng lên đến 2,14V thì AQ sơi. Chỉ lúc bắt đầu sôi, điện áp
trên các cực điện của AQ đƣợc nạp tăng lên nhanh và đạt trị số cuối cùng là 2,4V thì
khơng tăng nữa. Tuy nhiên dù điện áp và nồng độ chất điện phân không tăng nữa
nhƣng vẫn phải tiếp tục nạp AQ trong vòng 3h sau đó. Sau khi ngắt AQ khỏi mạng
điện, điện áp giảm nhanh đến trị số của sức điện động ổn định là 2,14V phù hợp với
AQ đã đƣợc nạp điện đủ.
Dấu hiệu chứng tỏ đã nạp điện xong: Điện áp và nồng độ chất điện phân ngừng
tăng và giữ khơng đổi trong thời gian 3h.
1.4.2. Q trình phóng điện của ắc quy

H2SO4 max
H2O min

H2SO4
H2O

Trọng lƣợng
riêng max

Pb

H2SO4 min
H2O max

Trọng lƣợng
riêng
PbO2

Pb
PbSO4

Trọng lƣợng
riêng cực tiểu
PbO2
PbSO4

Pb min
PbSO4 max

PbO2 min
PbSO4 max

Hình 1.3. Minh họa q trình phóng của AQ axít
Nếu đem nối hai bản cực của AQ đã đƣợc nạp điện với một phụ tải, ví dụ nhƣ
một bóng đèn thì năng lƣợng tích trữ trong AQ sẽ phóng qua tải, làm cho bóng đèn
sáng. Dòng điện của AQ sẽ đi theo chiều: Cực dƣơng của AQ (đầu cực đã nối với cực


7

dƣơng nguồn nạp) → Tải → Cực âm của AQ → Dung dịch điện phân → Cực dƣơng
của ắc quy.
Quá trình phóng điện của ắc quy, phản ứng hố học xảy ra trong AQ nhƣ sau:
- Tại cực dƣơng: PbO2 + 2H+ + H2SO4 +2e → PbSO4 + 2H2O
- Tại cực âm: Pb + SO24 → PbSO4 + 2e
Nhƣ vậy khi AQ phóng điện, chì sunfat lại đƣợc hình thành ở hai bản cực, làm
cho các bản cực dần trở lại giống nhau, cịn dung dịch axít bị phân thành cation 2H+ và
anion SO24 , đồng thời quá trình cũng tạo ra nƣớc trong dung dịch, do đó nồng độ của
dung dịch giảm dần và sức điện động của AQ cũng giảm dần.
Từ các phản ứng hóa học của AQ ở các chế độ phóng và nạp ta thấy đó là phản
ứng có tính thuận nghịch và vì vậy ta có thể viết thành một phƣơng trình chung nhƣ
sau:
Phóng ← 2PbSO4 + 2H2O ↔PbO2 + 2H2SO4 + Pb → nạp
1.5. Các thông số của ắc quy
1.5.1. Các thông số chung của ắc quy
1.5.1.1. Dung lượng (điện dung) của ắc quy
Là điện lƣợng của AQ đã đƣợc nạp đầy, rồi đem cho phóng điện liên tục với
dịng điện phóng u cầu tới khi điện áp của AQ giảm xuống đến trị số về điện áp, tỷ
trọng hay ở nhiệt độ quy định. Dung lƣợng của AQ đƣợc tính bằng ampe-giờ (Ah):
C = Iptp (A.h)
Dung lƣợng của AQ thay đổi phụ thuộc vào nhiều yếu tố nhƣng quan trọng nhất
đó là dịng điện phóng, nhiệt độ của dung dịch điện phân và thời gian phục vụ của AQ.
- Khi phóng điện AQ bằng dòng điện lớn, trong các lỗ xốp xảy ra mất dung
dịch rất nhanh và q trình hóa học xảy ra trên bề mặt bản cực. Trong này, đioxit lƣu
huỳnh đƣợc chia ra trên bề mặt bản cực sẽ lấp kín các lỗ xốp và đình chỉ việc thâm
nhập của axít vào sâu các chất tác dụng, phần lớn của nó sẽ khơng tham gia các phản
ứng hóa học. Do vậy, ở dịng điện lớn, trong phản ứng hóa học chỉ có phần nhỏ chất
tác dụng tham gia. AQ dùng dịng điện phóng càng lớn, cho điện dung càng nhỏ.
- Khi giảm nhiệt độ của dung dịch điện phân thì thời gian phóng và cả dung
lƣợng của AQ cũng sẽ giảm theo. Có thể tính một cách tƣơng đối: giảm nhiệt độ chất

điện phân đi 1oC ở trong khoảng từ 50 ÷ 15oC, dung lƣợng AQ giảm đi 1%.
- Thời gian phục vụ của AQ khiến điện dung của AQ giảm xuống. Lý do vì
giảm chất tác dụng do các bản cực dần dần bị phủ tinh thể sun phát chì khơng tan.
Đồng thời xảy ra sự tiêu hao chất tác dụng đặc biệt ở các bản cực dƣơng.


8

Hình 1.4. Biểu đồ thay đổi điện dung của AQ khi phóng (AQ 100Ah)
1.5.1.2. Sức điện động của ắc quy
Sức điện động Ea của AQ axít phụ thuộc vào nồng độ chất điện phân, đƣợc tính
theo cơng thức thực nghiệm sau: Ea  0,84  
Trong đó  là tỷ trọng của chất điện phân (nồng độ chất điện phân), g/cm3.
Với AQ axít, tỷ trọng chất điện phân giao động từ  = 1,11 ÷ 1,29 g/cm3 tƣơng
ứng khi phóng hết điện và khi đã đƣợc nạp đầy. Nhƣ vậy sức điện động mỗi ngăn AQ
giao động trong phạm vi 1,95 – 2,13V (Khi đã nạp no). Trong quá trình phóng – nạp
của AQ thì tỷ trọng chất điện phân sẽ bị thay đổi nên sức điện động cũng thay đổi
theo.
1.5.1.3. Điện áp của ắc quy
Tuỳ thuộc vào nồng độ chất điện phân và nguồn nạp cho AQ mà điện áp ở mỗi
ngăn của AQ khi nó đƣợc nạp đầy sẽ đạt 2,13V đến 2,14V (để hở mạch), và khi AQ đã
phóng điện hồn tồn là 1,7V đến 1,8V. Tuyệt đối khơng đƣợc phép phóng điện khi
điện áp của AQ phóng xuống đến ngƣỡng dƣới.
Điện áp của AQ khơng phụ thuộc vào số lƣợng bản cực của AQ nhiều hay ít.
- Điện áp của AQ ở chế độ phóng: Up = Ep - Ip.ra (ra là điện trở trong của AQ)
- Điện áp của AQ ở chế độ nạp: Un = En + In.ra
Trong q trình phóng, điện áp Up thay đổi theo quy luật hết sức phức tạp. Dấu
hiệu ở cuối lúc phóng điện là:
- Nồng độ chất điện phân giảm đến giá trị nhỏ nhất nào đó (theo hƣớng dẫn của
nhà máy sản xuất);

1.5.1.4. Điện trở trong của ắc quy
Là trị số điện trở bên trong của AQ, bao gồm điện trở các bản cực, điện trở
dung dịch điện phân có xét đến sự ngăn cách của các tấm ngăn giữa các bản cực.
Thƣờng thì trị số điện trở trong của AQ khi đã nạp đầy điện là (0,001-0,0015) và khi
AQ đã phóng điện hồn tồn là (0,02-0,025) .


9
- Điện trở trong của AQ thay đổi phụ thuộc vào mức độ phóng. Theo mức độ
phóng, điện trở trong tăng lên do tăng chất sun phát chì trên các bản cực, làm cho dịng
điện khơng đi qua và giảm nồng độ dung dịch điện phân. Ở giai đoạn cuối khi phóng,
điện trở trong tăng lên đến 2-3 lần.
Điện trở trong của AQ phụ thuộc vào nhiều yếu tố:
- Trị số và trạng thái bề mặt của các tấm bản cực;
- Khoảng cách giữa các tấm cực;
- Nồng độ và nhiệt độ chất điện phân;
- Trị số dịng điện phóng và nạp;
- Cấp điện áp nạp của ắc quy.
Các yếu tố này luôn thay đổi nên điện trở trong của AQ cũng luôn thay đổi
theo. Khi nạp ra sẽ giảm và khi phóng ra sẽ tăng.
Trong q trình già hóa của ắc quy, bề mặt chất tác dụng tham gia vào phản
ứng hóa học bị giảm đi và kết quả là điện trở trong tăng lên. Khi AQ phóng dịng điện
lớn, ví dụ khi khởi động, vật liệu và kết cấu của các lá cách có ý nghĩa quan trọng còn
khi nhiệt độ thấp, chất lƣợng của các lá cách trở nên quan trọng nhất.
1.5.1.5. Tỷ trọng của ắc quy
Tỷ trọng là một thông số quan trọng, đặc trƣng cho nồng độ dung dịch điện
phân của ắc quy. Tỷ trọng của AQ sẽ thay đổi theo q trình phóng, nạp.
1.5.1.6. Công suất của ắc quy
Công suất của AQ là năng lƣợng mà AQ phát ra trong một đơn vị thời gian.
Cơng suất cực đại của AQ khi phóng điện bằng 0,5Inm (Inm là dòng điện ngắn mạch) và

điện áp bằng 0,5Udđ (điện áp danh định của ắc quy). Giảm nhiệt độ của chất điện phân,
công suất phát ra của AQ sẽ bị giảm theo.
1.5.1.7. Sự tự phóng điện của ắc quy
Nếu AQ khơng sử dụng thì dung lƣợng của nó bị tiêu phí do sự tự phóng điện.
Ngun nhân của hiện tƣợng này là do có các tạp chất trong các tấm cực, trong chất
điện phân và trên mặt của ắc quy.
Lƣợng phóng điện phụ thuộc vào nhiệt độ chất điện phân, cấp nạp điện và thời
gian sử dụng của bộ ắc quy. Sự tự phóng đƣợc coi là bình thƣờng nếu tổn hao dung
lƣợng không quá 1 – 2% trong một ngày đêm. Khi sử dụng không đúng quy tắc, sẽ xảy
ra hiện tƣợng tự phóng điện rất nhanh, tổn hao cơng suất có thể đạt 3% và lớn hơn
trong một ngày đêm. Tăng nhiệt độ thì lƣợng tự phóng sẽ tăng theo.
1.5.2.Các thơng số cơ bản của AQ trên tàu Hải quân
- Chiều dài 600mm;
- Chiều rộng 400mm;


10
- Chiều cao ( khơng tính chiều cao của ống đƣa nƣớc làm mát và ống khuấy dung
dịch ) 1200mm;
- Chiều cao (tính cả ống lót)1220mm;
- Khối lƣợng có cả dung dịch điện ly (đầy dung dịch) 805 kg;
- Khối lƣợng khơng có dung dịch điện ly (khơ) 635 kg;
- Nhiệt độ lớn nhất của dung dịch điện ly không q 47

trong q trình nạp và

phóng cƣờng độ mạnh;
- Ở trƣờng hợp sự cố khi phóng mà khơng có hệ thống nƣớc làm mát thì nhiệt độ
của dung dịch điện ly không đƣợc vƣợt quá 60 ;
- Độ nghiêng cho phép lớn nhất ở bất kỳ hƣớng nào mà không bị trào dung dịch

ra ngoài 450;
- Tuổi thọ làm việc của AQ khoảng 5 năm. Vào thời gian cuối của tuổi thọ dung
lƣợng của AQ trong chế độ phóng 10h không đƣợc thấp hơn 80% so với định mức;
- Điện áp mạch hở của AQ trong trạng thái nạp là 2,13

2,14 (V)

Các thông số trên tƣơng ứng với các điều kiện sau:
- Sau khi nạp đầy thì mức dung dịch ở mức bình thƣờng (mức đo trên thƣớc) với
tỷ trọng ban đầu của dung dịch điện ly là p =1,290 g/cm3 khi nhiệt độ dung dịch là
30 .
- Khi hệ thống khuấy trộn dung dịch làm việc.
- Khi hệ thống nƣớc làm mát làm việc.
- Khi mức dung dịch 73mm trên tấm cách điện qua 6h hoặc 53 mm trên tấm cách
điện qua 24h.
- Điện áp đƣợc đo trên mỗi cực.
Lƣu ý:
+ Khi phóng điện mà khơng sử dụng hệ thống khuấy trộn dung dịch thì dung
lƣợng sẽ giảm xuống trên 5% ở tất cả các chế độ phóng.
+ Phóng ở các chế độ phóng lâu dài 100-200 h đến điện áp cuối cùng 1,7 V đƣợc
thực hiện trong trƣờng hợp cần phải xả toàn bộ dung lƣợng của AQ.
Bao gồm
- Bản cực dƣơng 58 cái;
- Bản cực âm 59 cái;
- Thanh nối có làm mát 2 cái (nối bản cực + và -);
- Thùng – 1 cái;
- Nút thông hơi 1 cái;
- Thiết bị khuấy trộn dung dịch.



11
- Tấm ngăn cách giữa các bản cực 116 cái;
- Nắp 1 cái;
- Ốc vặn đầu cực 12 cái;
- Thiết bị cách điện 1 cái ;
- Chân đế, trụ 2 cái;
AQ đƣợc chế tạo bằng block điện cực đƣợc bố trí trong thùng đóng kín bằng sợi
thủy tinh.
+ Block điện cực bao gồm các điện cực âm và điện cực dƣơng, các tấm ngăn
cách. Phía ngồi cùng của block là điện cực âm, các điện cực đƣợc hàn trên thanh dẫn
dƣơng và âm bằng các vấu dẫn điện và đƣợc phân chia bởi các tấm ngăn cách.
+ Điện cực âm và điện cực dƣơng là các bản cực có các ô ngăn đƣợc điền đầy
chất hoạt tính. Trong trạng thái nạp ở cực dƣơng là chì ơ xít PbO2 (màu đỏ nâu), ở cực
âm là chì xốp Pb (màu xám).
+ Bản cực âm và bản cực dƣơng bảo đảm đƣa điện vào và lấy điện ra từ chất hoạt
tính.
+ Tấm ngăn cách có dạng hình vng đƣợc chế tạo từ vật liệu tổng hợp có độ
xốp cao dùng để ngăn cách các bản cực. Ở một phía của mối tấm về phía bản cực
dƣơng bố trí gân tăng cứng bằng vật liệu thủy tinh nhằm mục đích tăng khối lƣợng
dung dịch điện ly và để chống sụt cho bản cực dƣơng.
+ Thanh góp (+ và -) có cấu trúc giống nhau và dùng để dẫn điện, dẫn nƣớc làm
mát, nâng và vận chuyển ắc quy.
+ Làm mát dùng để làm mát AQ và bố trí ở bên trong thanh góp.
+ Thùng AQ đƣợc chế tạo từ chất dẻo thủy tinh và có hình dáng vng.
+ Nắp thùng AQ đƣợc chế tạo từ chất dẻo thủy tinh có dạng hình vng.
Đầu bản cực
Nắp đậy
Thiết bị
khuấy đảo


Vách ngăn
bình chứa

Thanh ghép
nối

Hình 1.5. Cấu tạo của ắc quy [1]
Có lỗ để đƣa 2 đầu cực ra, đầu nối của bộ khuấy dung dịch, 4 dây nối dẫn nƣớc
làm mát, cảm biến mức độ và nhiệt độ, cảm biến tỷ trọng của dung dịch. Ở giữa nắp có


12
1 lỗ có ren dùng để đổ dung dịch điện ly hoặc hút dung dịch điện ly. Lỗ này luôn
đƣợc đóng kín bằng nút thơng hơi.
+ Tất cả các lỗ ở trên nắp đƣợc nén chặt bằng các vòng cao su để ngăn ngừa sự
rị rỉ dung dịch.
+ Nút thơng hơi đóng kín lỗ để rót dung dịch trên nắp và ngăn ngừa sự tràn dung
dịch từ AQ khi tàu nghiêng đến 450 và để xả khí ra khỏi ắc qui.
1.6. Cách đấu nối và đặc tính phóng nạp của ắc quy
Tổ hợp AQ bao gồm 2 nhóm và mỗi nhóm có 120 cái. AQ ở mỗi nhóm đƣợc
đấu nối tiếp với nhau.Trong thành phần của mỗi nhóm AQ đƣợc bố trí hệ thống làm
mát bằng nƣớc và hệ thống khuấy trộn dung dịch.
1.6.1. Đặc tính nạp của ắc quy
Quá trình nạp AQ có tác dụng làm cho phần các chất tác dụng ở sâu trong lòng
bản cực đƣợc biến đổi tuần hồn, nhờ đó làm tăng điện dung của AQ. Quá trình nạp
diễn ra thì đồng nghĩa cũng làm tăng tỷ trọng và điện áp của ắc quy.
Thời gian nạp no cho AQ kéo dài từ 2-3h, trong suốt thời gian đó hiệu điện thế
trên các bản cực AQ và nồng độ dung dịch điện phân không thay đổi. Nhƣ vậy dung
lƣợng thu đƣợc khi AQ phóng điện ln nhỏ hơn dung lƣợng cần thiết để nạp no AQ .
Sau khi ngắt mạch nạp, điện áp, sức điện động của AQ giảm xuống và ổn định.

Thời gian này cũng gọi là thời gian nghỉ của AQ sau khi nạp.
Trị số dòng điện nạp ảnh hƣởng rất lớn đến chất lƣợng và tuổi thọ của AQ.
Dòng điện nạp định mức với AQ là: In = 10%C10. Trong đó C10 là dung lƣợng của AQ
mà với chế độ nạp với dòng điện định mức là In=0,1C10 thì sau 10h AQ sẽ đầy.

Hình 1.6. Đặc tính điện áp và tỷ trọng của AQ khi phóng và nạp với dịng điện
khơng đổi
1.6.2. Quy trình phóng xả của ắc quy
Đặc tính phóng của AQ là đồ thị biểu diễn quan hệ phụ thuộc của sức điện
động, điện áp AQ và nồng độ dung dịch điện phân theo thời gian phóng khi dịng điện
phóng khơng thay đổi.


13
Từ đặc tính phóng của AQ ta có nhận xét:
Trong khoảng thời gian phóng từ t = 0 đến t = tgh (10h), sức điện động, điện áp
và nồng độ dung dịch điện phân giảm dần, tuy nhiên trong đoạn này độ dốc của đƣờng
đặc tính khơng lớn, ta gọi đó là giai đoạn phóng ổn định hay thời gian phóng điện cho
phép tƣơng ứng với mỗi chế độ phóng điện của AQ (dịng điện phóng).

Hình 1.7. Đặc tính phóng nạp của ắc quy
Từ thời gian tgh trở đi độ dốc của đồ thị thay đổi đột ngột. Nếu ta tiếp tục cho
AQ phóng điện sau thời gian tgh thì sức điện động, điện áp của AQ giảm rất nhanh.
Mặt khác các tinh thể sunfat chì tạo thành trong phản ứng sẽ có dạng thơ rắn rất khó
hồ tan (bị biến đổi hố học) trong q trình nạp điện trở lại cho AQ sau này. Thời
điểm tgh gọi là giới hạn phóng điện cho phép của ắc quy, các giá trị EP, UP, ρ tại tgh
đƣợc gọi là các giá trị phóng điện của ắc quy, AQ khơng đƣợc phóng điện khi dung
lƣợng cịn khoảng 80%.

Hình 1.8. Đặc tính phóng điện tới mức điện áp tối thiểu cho phép



14

Hình 1.9. Dung lƣợng định mức của AQ dựa trên mức 8 giờ

Hình 1.10. Chu kỳ phóng điện của AQ ở C20
1.7. Các quy tắc khai thác AQ trên tàu Hải quân
1.7.1. Dấu hiệu nạp no của AQ
Khi điện áp bắt đầu tăng lên đến 2,14V thì AQ sơi. Chỉ lúc bắt đầu sôi, điện áp
trên các cực điện của AQ đƣợc nạp tăng lên nhanh và đạt trị số cuối cùng là 2,14V thì
khơng tăng nữa. Tuy nhiên dù điện áp và nồng độ chất điện phân không tăng nữa
nhƣng vẫn phải tiếp tục nạp AQ trong vòng 3h sau đó. Sau khi ngắt AQ khỏi mạng
điện, điện áp giảm nhanh đến trị số của sức điện động ổn định là 2,13 - 2.14V, phù hợp
với AQ đã đƣợc nạp điện đủ.
Dấu hiệu chứng tỏ đã nạp điện xong:
- Điện áp và nồng độ chất điện phân ngừng tăng và giữ không đổi trong thời
gian 3h.
- Chất điện phân sôi, sủi bọt dữ dội;


15
1.7.2. Dấu hiệu phóng điện của ắc quy
Trong q trình phóng, điện áp Up thay đổi theo quy luật hết sức phức tạp. Dấu
hiệu ở cuối lúc phóng điện là:
- Nồng độ chất điện phân giảm đến giá trị nhỏ nhất nào đó (theo hƣớng dẫn của
nhà máy sản xuất);
- Điện áp giảm đến giá trị cuối cùng nào đó (ví dụ 1,7 đối với AQ phóng điện
10h)
Khơng đƣợc để AQ phóng điện xuống mức dƣới 80% dung lƣợng.

1.7.3. Nối mát
AQ phải đƣợc nối mát cẩn thận. Điều này đƣợc thực hiện bằng dây điện giữa
cực âm (-) của AQ đến block máy, nối AQ với mát thông qua trục chân vịt,…hoặc có
thể nối qua thanh góp nối mát chung.
1.7.4. Nhiệt độ
Khi nạp điện, đặc biệt là giai đoạn nạp nhanh, nhiệt độ bên trong AQ tăng rõ
rệt. Nếu nhiệt độ vƣợt quá 500C, tuổi thọ của AQ sẽ bị giảm rõ rệt. Để tránh điều này
cần đặt AQ nơi thơng thống hoặc đƣợc thơng gió tốt, tránh gần các nguồn gây nhiệt.
1.7.5. Bổ sung nước cất
Để tăng tuổi thọ cho ắc quy, cần phải bổ sung nƣớc cất, không đƣợc dùng các
loại nƣớc khác (dù là nƣớc sạch), do trong nƣớc có lẫn các tạp chất sẽ làm giảm tuổi
thọ của ắc quy. Cần phải châm nƣớc cất sau khi nạp điện. Nếu châm trƣớc khi nạp
điện có thể làm tràn dung dịch điện phân ra ngoài gây hƣ hỏng các cọc bình và làm
giảm nồng độ axít trong dung dịch điện phân.
Mức dung dịch trong bình cần phải cao hơn màng bảo vệ từ 810mm
(1215mm trên các tấm bản cực). Khi dung dịch thấp hơn mức nói trên thì cần phải có
thêm nƣớc cất vào ắc quy
1.7.6. Đo điện áp
Dùng volt kế để xác định trạng thái nạp của ắc quy. Điện áp của AQ tiếp tục
tăng sau khi dừng nạp điện, số đo điện áp tức thời sẽ thấp hơn trạng thái nạp đủ điện
khoảng 0,1V. Tƣơng tự sau khi phóng điện, điện áp AQ sẽ hồi phục sau vài giờ, do đó
để có số đo chính xác cần để AQ ổn định ít nhất sau 2h. Khi đo điện áp, AQ phải hoàn
toàn ngắt nối kết với các mạch điện ngoài.
1.7.7. Tháo dây điện đấu với các điện cực
Phải tháo dây cực âm (-) trƣớc và nối lại dây này sau cùng. Nếu có cọc bình và
kẹp định vị bị rỉ sét quá mức, phải làm sạch bằng bàn chải sắt, rửa sạch bằng dụng dịch
Na2CO3, rửa lại bằng nƣớc và lau thật khô. Sau khi lắp lại, cần nhỏ vài giọt nhớt ở cọc
bình và kẹp định vị (không dùng mỡ) để tránh rỉ sét.



16
1.7.8. Đo tỷ trọng dung dịch điện phân
Để bảo đảm tính chính xác cần đo tỷ trọng dung dịch điện phân sau khi để AQ
trong ít nhất 24h khơng sử dụng, thời gian này đủ để dung dịch của AQ ổn định.
1.7.9. Pha chế dung dịch điện phân:
Bảo tồn và pha chế dung dịch điện phân phải dùng các bình thủy tinh, nhựa
cloxit hay bình gỗ pha chì sạch sẽ. Cấm dùng bình sắt, đồng hay thiếc để pha.
Để pha chế dụng dịch điện phân cần xác định lƣợng nƣớc cất cần dùng sau đó
vừa nhỏ từ từ axít vừa khuấy đều, cẩn thận không để dung dịch văng vào ngƣời.
Lƣợng axít cần bổ sung vào đƣợc xác định bằng cách đo tỷ trọng của dụng dịch
điện phân. Tỷ trọng này có giá trị bằng khoảng 1,18g/cm3.
1.7.10. Quy tắc an tồn
Chất điện phân trong bình AQ khi văng vào ngƣời sẽ làm thủng quần áp, gây
bỏng ra, mù mắt. Khí độc trong bình bốc ra rất có hại nên khơng đƣợc ghé sát mắt vào
bình để quan sát và nên đeo kính bảo hộ khi làm việc. Khi bị nƣớc bình văng vào
ngƣời, cần rửa ngay bằng nƣớc sạch (khơng rửa bằng nƣớc biển, vì phản ứng giữa
dung dịch axít của bình AQ với nƣớc biển sẽ tạo ra khí clor bay ra, có thể gây tử
vong). Dùng bicacbonat natri (Na2CO3) để trung hịa những chỗ nƣớc bình vƣơng vãi.
- Khi đang nạp điện, hyđro và oxy sẽ thoát ra, do chúng nhẹ hơn khơng khí nên
chúng khơng lắng xuống đáy mà tích tụ trong buồng máy. Do đó buồng máy cần phải
đƣợc thống khí đồng thời khơng đƣợc vận hành máy khi đang nạp bình. Nếu nồng độ
khí hydro vƣợt quá ngƣỡng 4% sẽ gây cháy nổ, do đó phải làm tốt lƣu thơng khơng khí
và thu lại khí hydro để đốt bằng buồng đốt chuyên dụng.
- Khi nạp AQ các khí ăn mịn SO2, O2,…thốt ra, rất nguy hại cho những thiết
bị điện tử bố trí gần.
1.7.11. Những hư hỏng của bộ AQ
Sự phóng điện của bộ AQ xảy ra khi máy phát ngừng làm việc hoặc khi điơt
chỉnh lƣu bị hƣ hỏng. Sự phóng điện rất nhanh do có những hƣ hỏng trong mạch
phóng điện và trong mạch tiêu thụ điện (dò điện trong mạch điện áp thấp của hệ thống
đánh lửa, hệ thống khởi động, chiếu sáng, tín hiệu, đồng hồ kiểm tra đo lƣờng khi dây

dẫn bị hƣ hại) cũng nhƣ khi sử dụng liên tục đèn và các dụng cụ tiêu thụ khác vào lúc
máy phát không làm việc. Mức chất điện phân giảm nhanh chứng tỏ điện áp điều chỉnh
tăng cao và nhất thiết phải điều chỉnh lại rơle điều chỉnh. Sự tự phóng tăng nhanh – Sự
tự phóng đƣợc coi là tăng nhanh nếu nó vƣợt quá 1% dung lƣợng trong một ngày đêm.
Nếu vận hành không đúng quy tắc, sự tự phóng sẽ rất nhanh và có thể đạt đến 3%
dung lƣợng trong một ngày đêm hay lớn hơn nữa.


×