Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (169.83 KB, 5 trang )
<span class='text_page_counter'>(1)</span>5/> y:= (1/3*(cos(x)^4)(sin(x))^4); 1 y := cos( x ) 4 sin( x ) 4 3. 1/> y:= 2*sin(x)+cos(2*x); y := 2 sin( x ) cos( 2 x ). > y1:=diff(y,x); 4 y1 := cos( x ) 3 sin( x ) 4 sin( x ) 3 cos( x ) 3. > y1:=diff(y,x); y1 := 2 cos( x ) 2 sin( 2 x ) > y2:=solve(y1=0,{x}); 1 1 1 5 y2 := { x }, { x }, { x }, { x } 2 2 6 6. > y2:=solve(y1=0,{x}); 1 1 { x 0 }, { x }, { x } 2 2. 2/> y:= (1/3*(sin(x)^3)-(cos(x))^2); 1 y := sin( x ) 3 cos( x ) 2 3. 6/ > y:= (cos(x)^4)-(sin(x))^4; y := cos( x ) 4 sin( x ) 4 > y1:=diff(y,x); y1 := 4 cos( x ) 3 sin( x ) 4 sin( x ) 3 cos( x ). > y1:=diff(y,x); y1 := sin( x ) 2 cos( x ) 2 cos( x ) sin( x ). > y2:=solve(y1=0,{x}); 1 1 y2 := { x 0 }, { x }, { x } 2 2. > y2:=solve(y1=0,{x}); 1 1 { x 0 } { x }, { x } 2 2. 7/ > y:= (cos(x)^6)+(sin(x))^6; y := cos( x ) 6 sin( x ) 6. 3/ > y:=. (1/3*(cos(x)^3)+(sin(x))^2); 1 y := cos( x ) 3 sin( x ) 2 3. > y1:=diff(y,x); y1 := 6 cos( x ) 5 sin( x ) 6 sin( x ) 5 cos( x ). > y1:=diff(y,x); y1 := cos( x ) 2 sin( x ) 2 cos( x ) sin( x ). > y2:=solve(y1=0,{x}); 1 1 { x 0 }, { x }, { x } 2 2. > y2:=solve(y1=0,{x}); 1 1 { x 0 }, { x }, { x } 2 2. {x . 4/ > y:=. 1 1 }, { x } 4 4. 8/ > y:= 3*sin(x)+sin(3*x); y := 3 sin( x ) sin( 3 x ). (1/3*(cos(x)^4)+(sin(x))^4); 1 y := cos( x ) 4 sin( x ) 4 3. > y1:=diff(y,x); y1 := 3 cos( x ) 3 cos( 3 x ). > y1:=diff(y,x); 4 y1 := cos( x ) 3 sin( x ) 4 sin( x ) 3 cos( x ) 3. > y2:=solve(y1=0,{x}); 1 1 3 y2 := { x }, { x }, { x } 2 4 4. > y2:=solve(y1=0,{x}); 1 1 { x 0 }, { x }, { x } 2 2. 9/. {x . 1 1 }, { x } 6 6. > y:= 3*sin(x)-sin(3*x); y := 3 sin( x ) sin( 3 x ). > y1:=diff(y,x); y1 := 3 cos( x ) 3 cos( 3 x ) > y2:=solve(y1=0,{x}); 1 y2 := { x }, { x 0 }, { x } 2. 1 Lop12.net.
<span class='text_page_counter'>(2)</span> 10/. > y:= sin(2*x)/(2+cos(2*x)); y :=. 13/. sin( 2 x ) 2 cos( 2 x ). > y:=(sin(x))^2 + 3*cos(2*x); y := sin( x ) 2 3 cos( 2 x ). > y1:=diff(y,x); y1 := 2 sin( x ) cos( x ) 6 sin( 2 x ). > y1:=diff(y,x); cos( 2 x ) 2 sin( 2 x ) 2 y1 := 2 2 cos( 2 x ) ( 2 cos( 2 x ) ) 2. > y2:=simplify(y1); y2 := 10 sin( x ) cos( x ). > y2:=simplify(y1); 2 cos( 2 x ) 1 y2 := 2 4 4 cos( 2 x ) cos( 2 x ) 2. > y3:=solve(y2=0,{x}); 1 y3 := { x }, { x 0 } 2. > y3:=solve(y2=0,{x}); 1 y3 := { x } 3. 14/. 11/. y := e x sin( x ). > y1:=diff(y,x); y1 := e x ln( e ) sin( x ) e x cos( x ). > y:= cos(2*x)/(2+sin(2*x)); y :=. > y:=e^(x)*sin(x);. cos( 2 x ) 2 sin( 2 x ). > y2:=simplify(y1); y2 := e x ( ln( e ) sin( x ) cos( x ) ). > y1:=diff(y,x); sin( 2 x ) 2 cos( 2 x ) 2 y1 := 2 2 sin( 2 x ) ( 2 sin( 2 x ) ) 2. > y3:=solve(y2=0,{x}); 1 y3 := { x arctan } ln ( e) . > y2:=simplify(y1); 2 sin( 2 x ) 1 y2 := 2 5 4 sin( 2 x ) cos( 2 x ) 2. 15/. > y3:=solve(y2=0,{x}); 1 5 y3 := { x }, { x } 12 12. > y:=e^(x)*cos(x); y := e x cos( x ). > y1:=diff(y,x); y1 := e x ln( e ) cos( x ) e x sin( x ) > y2:=simplify(y1); y2 := e x ( ln( e ) cos( x ) sin( x ) ). > y:=sqrt(. 12/ cos(1*x))+sqrt(sin(x)); y := cos( x ) sin( x ). > y3:=solve(y2=0,{x}); y3 := { x arctan ( ln( e ) ) }. > y1:=diff(y,x);. 1 cos( x ) 1 sin( x ) 2 y1 := 2 cos( x ) sin( x ). 16/. > y:=e^(x)*(x-1); y := e x ( x 1 ). > y1:=diff(y,x); y1 := e x ln( e ) ( x 1 ) e x. > y2:=simplify(y1); ( 3/2 ) ( 3/2 ) 1 sin( x ) cos( x ) y2 := 2 cos( x ) sin( x ). > y2:=simplify(y1); y2 := e x ln( e ) x e x ln( e ) e x. > y3:=solve(y2=0,{x}); 1 3 y3 := { x }, { x } 4 4. > y3:=solve(y2=0,{x}); ln( e ) 1 y3 := { x } ln( e ). 2 Lop12.net.
<span class='text_page_counter'>(3)</span> 17/. > y:=(x)*e^(1-x); y := x e. (1 x ). > y1:=diff(y,x); y1 := 2 x e x x 2 e x ln( e ). > y2:=simplify(y1); (1 x ) (1 x ) y2 := e xe ln( e ). > y2:=solve(y1=0,{x});. > y3:=solve(y2=0,{x}); 1 y3 := { x } ln( e ). y2 := { x 0 }, { x 2. (x 1). > y1:=diff(y,x); (x 1) (x 1) y1 := 2 x e x2 e ln( e ). > y1:=diff(y,x); (x 1) (x 1) y1 := e xe ln( e ). > y2:=solve(y1=0,{x}); y2 := { x 0 }, { x 2. > y2:=simplify(y1); (x 1) (x 1) y2 := e xe ln( e ). y := x e. > y1:=diff(y,x); y1 := e. > y:=(x)^2*e^(x^2); y := x 2 e. 2 (x ). > y1:=diff(y,x); y1 := 2 x e. 2 (x ). 2 x3 e. > y2:=simplify(y1); y2 := 2 x e. 2 (x ). 2 x3 e. 2 (x ). 2 (x ). y1 := 2 x e. ln( e ). > y1:=diff(y,x); 1 1 1 y1 := 2 4x 2. 1 } ln( e ). 2 (x 1). 1 4x. > y2:=solve(y1=0,{x}); y2 := { x 0 } 25 / > y:=(sqrt(4+x^2))-(sqrt(x^2)); y := 4 x 2 x 2 > y1:=diff(y,x);. 2x e. x). ln( e ). (x 1). 3. ( 1 xe 2. 24/ > y:=(sqrt(4+x))+(sqrt(4-x)); y := 4 x 4 x. 2. > y1:=diff(y,x);. 2 (x 1). . ln( e ). > y:=(x)^2*e^(x^2-1); y := x 2 e. ( x). ( x). > y2:=solve(y1=0,{x}); 1 y2 := { x 4 } ln( e ) 2. > y3:=solve(y2=0,{x}); 1 y3 := { x 0 }, { x }, { x ln( e ) 20/. 1 } ln( e ). 23/ > y:=(x)*e^(sqrt(x));. > y3:=solve(y2=0,{x}); 1 y3 := { x } ln( e ) 19/. 1 } ln( e ). 22/ > y:=(x)^2*e^(x-1); (x 1) y := x 2 e. > y:=(x)*e^(x-1); y := x e. 1 } ln( e ). 21/ > y:=(x)^2*e^(x); y := x 2 e x. > y1:=diff(y,x); (1 x ) (1 x ) y1 := e xe ln( e ). 18/. 1 }, { x ln( e ). y2 := { x 0 }, { x . y1 :=. ln( e ). > y2:=solve(y1=0,{x});. x. 4x. 2. . > y2:=solve(y1 =0,{x}); x=0. 3 Lop12.net. x x2.
<span class='text_page_counter'>(4)</span> 26/ > y:=(sqrt(4-x^2))+(sqrt(x^2)); y := 4 x 2 x 2. > y2:=solve(y1 =0,{x}); y2 := { x 2 }. > y1:=diff(y,x);. 31/ > y:= 3*sqrt(9-x)+6*sqrt(x+6); y := 3 9 x 6 x 6. y1 := . x 4 x2. x. . x2. > y1:=diff(y,x); 3 1 y1 := 2 9x. > y2:=solve(y1 =0,{x}); y2 := { x 2 }, { x 2 }. > y2:=solve(y1 =0,{x}); y2 := { x 6 }. x=0 > restart: 27/ > y:= x+(sqrt(2-x^2)); y := x 2 x 2 > y1:=diff(y,x); y1 := 1 . 32/ > y:= 3*sqrt(12-x)+6*sqrt(x+8); y := 3 12 x 6 x 8 > y1:=diff(y,x); 3 1 y1 := 2 12 x. x 2 x2. 33/ > y:= x*ln(x); y := x ln( x ). > y:= 3*x-5*(sqrt(4+x^2));. > y1:=diff(y,x); y1 := ln( x ) 1. y := 3 x 5 4 x 2. > y1:=diff(y,x); y1 := 3 . > y2:=solve(y1 =0,{x}); ( -1 ) y2 := { x e }. 5x 4 x2. 34/ > y:= ln(x)/x;. > y2:=solve(y1 =0,{x}); 3 y2 := { x } 2. y :=. > y1:=diff(y,x);. 29/> y:= 6*x-8*(sqrt(4*x-x^2)); y := 6 x 8 4 x x 2 > y1:=diff(y,x); y1 := 6 . y1 :=. 4 x x2. 1 ln( x ) x2 x2. 35/ > y:= ln(x)/x^2; ln( x ) y := x2 > y1:=diff(y,x);. > y:= 3*sqrt(4-x)+6*sqrt(x+6);. y1 :=. y := 3 4 x 6 x 6. > y1:=diff(y,x); 3 1 y1 := 2 4x. ln( x ) x. > y2:=solve(y1 =0,{x}); y2 := { x e }. 4 (4 2 x). > y2:=solve(y1 =0,{x}); 4 y2 := { x } 5 30/. 3 x8. > y2:=solve(y1 =0,{x}); y2 := { x 8 }. > y2:=solve(y1 =0,{x}); y2 := { x 1 } 28/. 3 x6. 1 2 ln( x ) x3 x3. > y2:=solve(y1 =0,{x}); ( 1/2 ) y2 := { x e }. 3 x6. 4 Lop12.net.
<span class='text_page_counter'>(5)</span> 36/ > y:= ln(x)*x^2; y := ln( x ) x 2. 41/ > y:=1*x-1*ln(5*x^2-10*x+10); y := x ln( 5 x 2 10 x 10 ). > y1:=diff(y,x); y1 := x 2 x ln( x ). > y1:=diff(y,x);. > y2:=solve(y1 =0,{x}); ( -1 /2 ) y2 := { x e }. y1 := 1 . 10 x 10 5 x 10 x 10 2. 37/ > y:=( x^2)*ln(x^2); y := x 2 ln( x 2 ). > y2:=solve(y1=0,{x}); y2 := { x 2 }, { x 2 }. > y1:=diff(y,x); y1 := 2 x ln( x 2 ) 2 x. 42/ > y:=1*x-1*ln(1*x^2-10*x+10); y := x ln( x 2 10 x 10 ). > y2:=solve(y1 =0,{x}); y2 := { x e. ( -1 ). }, { x . e. ( -1 ). > y1:=diff(y,x);. }. y1 := 1 . 38/ > y:=1*x-ln(x^2-1*x+1); y := x ln( x 2 x 1 ). > y2:=solve(y1=0,{x}); y2 := { x 10 }, { x 2 }. > y1:=diff(y,x);. 43/ > y:=1*x*e^(-x^2/2);. 2x1 y1 := 1 2 x x1. y := x e. > y2:=solve(y1=0,{x}); y2 := { x 2 }, { x 1 }. y1 := 1 . y1 := e. 2 ( 10 x 5 ) 5 x 2 5 x 10. x2 e. 2 ( 1/2 x ). ln( e ). 1 } ln( e ). 44/ > y:=tan(x)+cot(x); y := tan ( x ) cot ( x ). > y1:=diff(y,x); y1 := tan ( x ) 2 cot ( x ) 2. 40/ > y:=1*x+2*ln(5*x^2+5*x+10); y := x 2 ln( 5 x 2 5 x 10 ). y1 := 1 . 2 ( 1/2 x ). > y2:=solve(y1=0,{x}); 1 y2 := { x }, { x ln( e ). > y2:=solve(y1=0,{x}); y2 := { x 0 }, { x 3 }. > y1:=diff(y,x);. 2 ( 1/2 x ). > y1:=diff(y,x);. 39/ > y:=1*x-2*ln(5*x^2+5*x+10); y := x 2 ln( 5 x 2 5 x 10 ). > y1:=diff(y,x);. 2 x 10 x 10 x 10 2. > y2:=solve(y1=0,{x}); 1 1 y2 := { x }, { x } 4 4. 2 ( 10 x 5 ) 5 x 2 5 x 10. > y2:=solve(y1=0,{x}); y2 := { x -1 }, { x -4 }. 5 Lop12.net.
<span class='text_page_counter'>(6)</span>