Tải bản đầy đủ (.doc) (12 trang)

Bài soạn bai tap nguyen ham tich phan va ung dung

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (195.88 KB, 12 trang )

TÍCH PHÂN
I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG TÍNH CHẤT VÀ NGUYÊN HÀM CƠ BẢN:
1.
1
3
0
( 1)x x dx+ +

2.
2
2
1
1 1
( )
e
x x dx
x x
+ + +

2.
3
1
2x dx−

3.
2
1
1x dx+


4.


2
3
(2sin 3 )x cosx x dx
π
π
+ +

5.
1
0
( )
x
e x dx+

6.
1
3
0
( )x x x dx+

7.
2
1
( 1)( 1)x x x dx+ − +


8.
2
3
1

(3sin 2 )x cosx dx
x
π
π
+ +

9.
1
2
0
( 1)
x
e x dx+ +

10.
2
2
3
1
( )x x x x dx+ +

11.
2
1
( 1)( 1)x x x dx− + +


12.
3
3

1
x 1 dx( ).

+

13.
2
2
2
-1
x.dx
x +

14.
2
e
1
7x 2 x 5
dx
x

− −

15.
x 2
5
2
dx
x 2+ + −


16.
2
2
1
x 1 dx
x x x
( ).
ln
+
+

17.
2
3
3
6
x dx
x
cos .
sin
π
π

18.
4
2
0
tgx dx
x
.

cos
π

19.
1
x x
x x
0
e e
e e
dx



+

20.
1
x
x x
0
e dx
e e
.

+

21.
2
2

1
dx
4x 8x+

22.
3
x x
0
dx
e e
ln
.

+

22.
2
0
dx
1 xsin
π
+

24.


++
1
1
2

)12( dxxx
25.

−−
2
0
3
)
3
2
2( dxxx
26.



2
2
)3( dxxx
27.



4
3
2
)4( dxx
28.
dx
xx








+
2
1
32
11
29.


2
1
3
2
2
dx
x
xx
30.

e
e
x
dx
1
1

31.

16
1
.dxx
32.
dx
x
xx
e

−+
2
1
752

33.
dx
x
x











8
1
3 2
3
1
4
II. PHƯƠNG PHÁP ĐẶT ẨN PHỤ:
1.
2
3 2
3
sin xcos xdx
π
π

2.
2
2 3
3
sin xcos xdx
π
π

3.
2
0
sin
1 3
x
dx

cosx
π
+

3.
4
0
tgxdx
π

4.
4
6
cot gxdx
π
π


5.
6
0
1 4sin xcosxdx
π
+

6.
1
2
0
1x x dx+


7.
1
2
0
1x x dx−

8.
1
3 2
0
1x x dx+


9.
1
2
3
0
1
x
dx
x +

10.
1
3 2
0
1x x dx−


11.
2
3
1
1
1
dx
x x +

12.
1
2
0
1
1
dx
x+

13.
1
2
1
1
2 2
dx
x x

+ +

14.

1
2
0
1
1
dx
x +

15.
1
2 2
0
1
(1 3 )
dx
x+

16.
2
sin
4
x
e cosxdx
π
π

17.
2
4
sin

cosx
e xdx
π
π

18.
2
1
2
0
x
e xdx
+


19.
2
3 2
3
sin xcos xdx
π
π

20.
2
sin
4
x
e cosxdx
π

π

21.
2
4
sin
cosx
e xdx
π
π

22.
2
1
2
0
x
e xdx
+

23.
2
3 2
3
sin xcos xdx
π
π


- 1 -

24.
2
2 3
3
sin xcos xdx
π
π

25.
2
0
sin
1 3
x
dx
cosx
π
+

26.
4
0
tgxdx
π

27.
4
6
cot gxdx
π

π


28.
6
0
1 4sin xcosxdx
π
+

29.
1
2
0
1x x dx+

30.
1
2
0
1x x dx−

31.
1
3 2
0
1x x dx+

32.
1

2
3
0
1
x
dx
x +

33.
1
3 2
0
1x x dx−

34.
2
3
1
1
1
dx
x x +

35.
1
1 ln
e
x
dx
x

+

36.
1
sin(ln )
e
x
dx
x

37.
1
1 3ln ln
e
x x
dx
x
+

38.
2ln 1
1
e
x
e
dx
x
+

39.

2
2
1 ln
ln
e
e
x
dx
x x
+

40.
2
2
1
(1 ln )
e
e
dx
cos x+


41.
2
1
1 1
x
dx
x+ −


42.
1
0
2 1
x
dx
x +

43.
1
0
1x x dx+

44.
1
0
1
1
dx
x x+ +

45.
1
0
1
1
dx
x x+ −

46.

3
1
1x
dx
x
+

46.
1
1 ln
e
x
dx
x
+

47.
1
sin(ln )
e
x
dx
x

48.
1
1 3ln ln
e
x x
dx

x
+

49.
2ln 1
1
e
x
e
dx
x
+


50.
2
2
1 ln
ln
e
e
x
dx
x x
+

51.
2
2
1

(1 ln )
e
e
dx
cos x+

52.
1
2 3
0
5+

x x dx
53.
( )
2
4
0
sin 1 cos+

x xdx
π

54.
4
2
0
4 x dx−

55.

4
2
0
4 x dx−

56.
1
2
0
1
dx
x+

57.
dxe
x


+
0
1
32
58.


1
0
dxe
x
59.

1
3
0
x
dx
(2x 1)+

60.
1
0
x
dx
2x 1+

61.
1
0
x 1 xdx−

62.
1
2
0
4x 11
dx
x 5x 6
+
+ +

63.

1
2
0
2x 5
dx
x 4x 4

− +

64.
3
3
2
0
x
dx
x 2x 1+ +

65.
6
6 6
0
(sin x cos x)dx
π
+

66.
3
2
0

4sin x
dx
1 cos x
π
+

67.
4
2
0
1 sin 2x
dx
cos x
π
+

68.
2
4
0
cos 2xdx
π

69.
2
6
1 sin 2x cos2x
dx
sin x cos x
π

π
+ +
+

70.
1
x
0
1
dx
e 1+

. 71.
dxxx )sin(cos
4
0
44


π

72.

+
4
0
2sin21
2cos
π
dx

x
x
73.

+
2
0
13cos2
3sin
π
dx
x
x
74.


2
0
sin25
cos
π
dx
x
x
75.


−+
+
0

2
2
32
22
dx
xx
x
76.

++

1
1
2
52xx
dx

77.
2
3 2
0
cos xsin xdx
π

78.
2
5
0
cos xdx
π


79.
4
2
0
sin 4x
dx
1 cos x
π
+

80.
1
3 2
0
x 1 x dx−

81.
2
2 3
0
sin 2x(1 sin x) dx
π
+

82.
4
4
0
1

dx
cos x
π

83.
e
1
1 ln x
dx
x
+

84.
4
0
1
dx
cos x
π

- 2 -
85.
e
2
1
1 ln x
dx
x
+


86.
1
5 3 6
0
x (1 x ) dx−

87.
6
2
0
cos x
dx
6 5sin x sin x
π
− +

88.
3
4
0
tg x
dx
cos 2x

89.
4
0
cos sin
3 sin 2
x x

dx
x
π
+
+

90.

+
2
0
22
sin4cos
2sin
π
dx
xx
x
91.

−+

5ln
3ln
32
xx
ee
dx
92.


+
2
0
2
)sin2(
2sin
π
dx
x
x

93.

3
4
2sin
)ln(
π
π
dx
x
tgx
94.


4
0
8
)1(
π

dxxtg
95.

+

2
4
2sin1
cossin
π
π
dx
x
xx
96.

+
+
2
0
cos31
sin2sin
π
dx
x
xx

97.

+

2
0
cos1
cos2sin
π
dx
x
xx
98.

+
2
0
sin
cos)cos(
π
xdxxe
x
99.

−+
2
1
11
dx
x
x
100.

+

e
dx
x
xx
1
lnln31

101.

+

4
0
2
2sin1
sin21
π
dx
x
x
102.
1
2
0
1 x dx−

103.
1
2
0

1
dx
1 x+

104.
1
2
0
1
dx
4 x−

105.
1
2
0
1
dx
x x 1− +

106.
1
4 2
0
x
dx
x x 1+ +

107.
2

0
1
1 cos sin
dx
x x
π
+ +

108.
2
2
2
2
0
x
dx
1 x−

109.
2
2 2
1
x 4 x dx−

110.
2
3
2
2
1

dx
x x 1−

101.
3
2
2
1
9 3x
dx
x
+

112.
1
5
0
1
(1 )
x
dx
x

+

113.
2
2
2
3

1
1
dx
x x −

114.
2
0
cos
7 cos2
x
dx
x
π
+

115.
1
4
6
0
1
1
x
dx
x
+
+

116.

2
0
cos
1 cos
x
dx
x
π
+

117.

++

0
1
2
22xx
dx
118.

++
1
0
311 x
dx
119.




2
1
5
1
dx
x
xx
120.
8
2
3
1
1
dx
x x +

121.
7
3
3 2
0
1
x
dx
x+


122.
3
5 2

0
1x x dx+


123.
ln2
x
0
1
dx
e 2+

124.
7
3
3
0
1
3 1
x
dx
x
+
+

125.
2
2 3
0
1x x dx+


126.

+
32
5
2
4xx
dx
II. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN:
Công thức tích phân từng phần :
u( )v'(x) x ( ) ( ) ( ) '( )
b b
b
a
a a
x d u x v x v x u x dx= −
∫ ∫

Bài tập
1.
3
3
1
ln
e
x
dx
x


2.
1
ln
e
x xdx

3.
1
2
0
ln( 1)x x dx
+

4.
2
1
ln
e
x xdx

5.
3
3
1
ln
e
x
dx
x


6.
1
ln
e
x xdx

7.
1
2
0
ln( 1)x x dx
+

8.
2
1
ln
e
x xdx

9.
2
0
( osx)sinxx c dx
π
+

10.
1
1

( )ln
e
x xdx
x
+

- 3 -
11.
2
2
1
ln( )x x dx
+

12.
3
2
4
tanx xdx
π
π

13.
2
5
1
ln x
dx
x


14.
2
0
cosx xdx
π

15.
1
0
x
xe dx


Tính các tích phân sau
1)

1
0
3
. dxex
x
2)


2
0
cos)1(
π
xdxx
3)



6
0
3sin)2(
π
xdxx
4)

2
0
2sin.
π
xdxx
5)

e
xdxx
1
ln

6)


e
dxxx
1
2
.ln).1(
7)


3
1
.ln.4 dxxx
8)

+
1
0
2
).3ln(. dxxx
9)

+
2
1
2
.).1( dxex
x
10)

π
0
.cos. dxxx
11)

2
0
2
.cos.

π
dxxx
12)

+
2
0
2
.sin).2(
π
dxxxx
13)
2
5
1
ln x
dx
x

14)
2
2
0
x cos xdx
π


15)
1
x

0
e sin xdx

16)
2
0
sin xdx
π

17)
e
2
1
x ln xdx

18)
3
2
0
x sin x
dx
cos x
π
+

19)
2
0
x sin x cos xdx
π


20)
4
2
0
x(2 cos x 1)dx
π


21)
2
2
1
ln(1 x)
dx
x
+

22)
1
2 2x
0
(x 1) e dx+


23)
e
2
1
(x ln x) dx


24)
2
0
cos x.ln(1 cos x)dx
π
+

25)
2
1
ln
( 1)
e
e
x
dx
x +

26)
1
2
0
xtg xdx

27)


1
0

2
)2( dxex
x

28)

+
1
0
2
)1ln( dxxx
29)

e
dx
x
x
1
ln
30)

+
2
0
3
sin)cos(
π
xdxxx
31)


++
2
0
)1ln()72( dxxx

32)


3
2
2
)ln( dxxx

III. TÍCH PHÂN HÀM HỮU TỶ:
1.

+−

5
3
2
23
12
dx
xx
x
2.

++
b

a
dx
bxax ))((
1
3.

+
++
1
0
3
1
1
dx
x
xx
4.
dx
x
xx

+
++
1
0
2
3
1
1
5.


+
1
0
3
2
)13(
dx
x
x
6.

++
1
0
22
)3()2(
1
dx
xx
7.

+

2
1
2008
2008
)1(
1

dx
xx
x
8.


+−
++−
0
1
2
23
23
9962
dx
xx
xxx
9.


3
2
22
4
)1(
dx
x
x
10.


+

1
0
2
32
)1(
dx
x
x
n
n
11.

++

2
1
24
2
)23(
3
dx
xxx
x
12.

+
2
1

4
)1(
1
dx
xx
13.

+
2
0
2
4
1
dx
x
14.

+
1
0
4
1
dx
x
x
15.
dx
xx

+−

2
0
2
22
1
16.

+
1
0
32
)1(
dx
x
x
17.

+−
4
2
23
2
1
dx
xxx
18.

+−
++
3

2
3
2
23
333
dx
xx
xx
19.

+

2
1
4
2
1
1
dx
x
x
20.

+
1
0
3
1
1
dx

x
21.

+
+++
1
0
6
456
1
2
dx
x
xxx
22.

+

1
0
2
4
1
2
dx
x
x
23.

+

+
1
0
6
4
1
1
dx
x
x
- 4 -
24.
1
2
0
4 11
5 6
x
dx
x x
+
+ +

25.
1
2
0
1
dx
x x+ +


26.


+
3
2
1
2
dx
x
x
27.
dx
x
x








+

1
0
3
1

22
28.








+−


0
1
12
12
2
dxx
x
x
29.
dxx
x
x








−−
+

2
0
1
2
13
30.
dx
x
xx

+
++
1
0
2
3
32
31.
dxx
x
xx











+−

++
0
1
2
12
1
1
32.
dxx
x
xx









+−
+

−+
1
0
2
1
1
22
33.

++
1
0
2
34xx
dx

IV. TÍCH PHÂN HÀM LƯỢNG GIÁC:
1.
xdxx
4
2
0
2
cossin

π
2.

2
0

32
cossin
π
xdxx
3.
dxxx

2
0
54
cossin
π
4.

+
2
0
33
)cos(sin
π
dxx
5.

+
2
0
44
)cos(sin2cos
π
dxxxx

6.

−−
2
0
22
)coscossinsin2(
π
dxxxxx
7.

2
3
sin
1
π
π
dx
x
8.

−+
2
0
441010
)sincoscos(sin
π
dxxxxx
9.



2
0
cos2
π
x
dx
10.

+
2
0
sin2
1
π
dx
x
11.

+
2
0
2
3
cos1
sin
π
dx
x
x

12.

3
6
4
cos.sin
π
π
xx
dx
13.

−+
4
0
22
coscossin2sin
π
xxxx
dx
14.

+
2
0
cos1
cos
π
dx
x

x
15.


2
0
cos2
cos
π
dx
x
x
16.

+
2
0
sin2
sin
π
dx
x
x
17.

+
2
0
3
cos1

cos
π
dx
x
x
18.

++
2
0
1cossin
1
π
dx
xx
19.


2
3
2
)cos1(
cos
π
π
x
xdx
20.



++
+−
2
2
3cos2sin
1cossin
π
π
dx
xx
xx
21.

4
0
3
π
xdxtg
22.
dxxg

4
6
3
cot
π
π
23.

3

4
4
π
π
xdxtg
24.

+
4
0
1
1
π
dx
tgx
25.

+
4
0
)
4
cos(cos
π
π
xx
dx
26.

++

++
2
0
5cos5sin4
6cos7sin
π
dx
xx
xx
27.

+
π
2
0
sin1 dxx
28.

++
4
0
13cos3sin2
π
xx
dx
- 5 -

×