Tải bản đầy đủ (.docx) (6 trang)

1 TOAN 12 DE HK1 2013 DONG THAP

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (181.05 KB, 6 trang )

<span class='text_page_counter'>(1)</span>SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP. KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Năm học: 2012-2013 Môn thi: TOÁN - Lớp 12 Thời gian: 120 phút (không kể thời gian phát đề) Ngày thi: 14/12/2012. ĐỀ ĐỀ XUẤT (Đề gồm có 01 trang) Đơn vị ra đề: THPT CAO LÃNH 1 ). I. PHẦN CHUNG (7,0 điểm) y. x 3 x  2 có đồ thị (C). Câu I ( 3 điểm) Cho hàm số 1.Khảo sát sự biến thiên và vẽ đồ thị (C). 2.Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt Câu II ( 2 điểm) 3. 4 2 5 16 log 2 ( ) 2 1.Tính B = 2. Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x4 - 8x2 + 15 trên đoạn [-1; 3]. Câu III ( 2 điểm) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SB= a 3 1.Tính thể tích của hình chóp S.ABCD 2.Xác định tâm, bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD II. PHẦN RIÊNG (3,0 điểm) (Học sinh chọn IVa và Va hay IVb và Vb ) A. Theo chương trình chuẩn. Câu IVa ( 1 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số tuyến song song với đường thẳng 3x - 4y = 0. Câu Va ( 2 điểm) Giải các phương trình và bất phương trình sau 1/ 22x+1 – 9.2x + 4 = 0. log 2  x 2  2 x  3 1  log 2  3x  1. 2/ B. Theo chương trình nâng cao.. (d m ). x 4 x  1 biết tiếp. .. Câu IVb ( 1 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số tiếp tuyến song song với đường thẳng 3x + y - 2 = 0. Câu Vb ( 2 điểm) 1. Tính đạo hàm của các hàm số sau: a) y = x2.e4x b) y = ex.ln(2 + sinx) 2.Cho họ đường thẳng. y. (d m ) : y mx  2m  16. y. x2  x  2 x  2 biết. với m là tham số . Chứng minh rằng. 3 2 luôn cắt đồ thị (C): y x  3x  4 tại một điểm cố định I ..

<span class='text_page_counter'>(2)</span> .........Hết....... SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG THÁP. KIỂM TRA CHẤT LƯỢNG HỌC KÌ I Năm học: 2012-2013 Môn thi: TOÁN – Lớp 12. HƯỚNG DẪN CHẤM ĐỀ ĐỀ XUẤT (Hướng dẫn chấm gồm có 04 trang) Đơn vị ra đề: THPT CAO LÃNH 1 Câu. Nội dung yêu cầu. C I.1 Khảo sát sự biến thiên và vẽ đồ thị TXĐ D=R\ { 2 } x − 2¿ ¿ 1 ; y =¿. x 3 x 2. 0.25 0.25. >0 với mọi x D +¿. x →2 =− ∞ vì lim y =+ ∞ ; lim y x →2. TCN y= 1. vì. BBT x  y. y. 2. TCĐ x=2. y. Điểm. 2 +. −. 0.25. ¿. lim y =1 x →± ∞. +∞. 0.25. 0.25. + . x=0 => y=3/2 y=0 => x=3. 1. 0.25. Đồ thị 0.5.

<span class='text_page_counter'>(3)</span> C I.2. 2) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt. 1đ. Phương trình hoành độ của (C ) và đường thẳng y mx  1 :. 0.25. x 3 mx  1  g(x) mx2  2mx  1 0 , x 1 x 2. (1). Để (C ) và (d) cắt nhau tại hai điểm phân biệt  phương trình (1) có hai. 0.25. nghiệm phân biệt khác 2 ⇔ m≠0 Δ ;=m2 − m>0 g ( 2) ≠ 0 ¿{{ ⇔ m≠ 0 m<0 ∨m>1 1 ≠0 ¿{{ ⇔m<0 ∨ m>1. CII.1. 0.25 3. 4 2 5 16 log 2 ( ) 2 1.Tính B = B = log2. 2 3. 1 2. 0.5. =16/15. 0.5. 2 2 2. =. 16 15. log 2 2. 1đ. 2 5. 2. CII.2. 0.25. 1 2. 2.Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x4 - 8x2 + 15 trên đoạn [-1; 3]. Hàm số y = x4 - 8x2 + 15 liên tục trên đoạn [-1; 3]. Ta có y’ = 4x3 - 16x = 4x(x2 - 4).. 1đ 0.25.

<span class='text_page_counter'>(4)</span>  y ' 0    1  x  3. 4x(x 2  4) 0    1  x  3.  x 0, x 2    1  x  3. 0.25.  x 0   x 2. 0.25. y(-1) = 8; y(0) = 15; y(2) = -1; y(3) = 24. Min y y(2)  1; Max y y(3) 24. CIII. [-1; 3] Vậy [-1; 3] Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SB= a 3 1.Tính thể tích của hình chóp S.ABCD 2.Xác định tâm, bán kính của mặt cầu ngoại tiếp hình chóp S.ABCD 1.SABCD=a2. SA  SB 2  AB 2 .  a 3. 2.  a 2 a 2. 0.25 2đ. 0.25 0.25 0.25. 1 1 1 2 V VSABCD  Bh  .SA.a 2  .a 2.a 2  .a 3 3 3 3 3 s. 0.25. H I A. D O. B C. 2.Gọi O là tâm của hình vuông ABCD, O chính là tâm đường tròn ngoại 0.25 tiếp hình vuông ABCD. Qua O kẻ đường thẳng d song song SA, d là trục của đường tròn ngoại tiếp hình vuông ABCD, d cắt SC tại I trung điểm của SC Ta có: Tam giác SAC vuông tại A, I trung điểm SC do đó: 0.25 IA=SC/2=IS=IC Hay IS=IA=IB=IC=ID. Vậy I là tâm mặt cầu ngoại tiếp hình chóp SABCD 0.25 0.25 SC SA2  AC 2 2a 2  2a 2 Tính bán kính:R=IA= 2. . 2. . 2. CIVa.1 Viết phương trình tiếp tuyến của đồ thị hàm số tuyến song song với đường thẳng 3x - 4y = 0. y' . a. y. x 4 x  1 biết tiếp. 3 3 , x 1  y '(x 0 )  2 (x  1) (x 0  1)2 .. y’(x0) = 3/4  (x0 - 1)2 = 4  x0 = -1 hoặc x0 = 3. 3 5 (x  1)  2 Với x0 = -1, y0 = 5/2, ta có tiếp tuyến tại (-1; 5/2) là y = 4 3 1 (x  3)  2. Với x0 = 3, y0 = -1/2, ta có tiếp tuyến tại (3; -1/2) là y = 4. CVa.1. 1. Giải các phương trình sau 22x+1 – 9.2x + 4 = 0. 1đ. 0.25 0.25 0.25 0.25 1đ.

<span class='text_page_counter'>(5)</span> ( 1 ) ⇔2. 22 x −9 . 2x +4=0 ( 2 ) Đặt t=2x >0 , ( 2 ) ⇔2. t 2 − 9 .t +4=0 ⇔ t=4 ¿ 1 t= 2 ¿ ¿ ¿ ¿ ¿ Vậy x=2 ; x=-1. CVa.2. Câu IVb. 2.Giải bất phương trình:. 0.25 0.25 0.25. log 2  x 2  2 x  3 1  log 2  3x  1. .. 3x  1  0   2  log 2  x 2  2 x  3 log 2 2  3 x  1  x  2 x  3 2  3x  1 Bpt 1  1  x   x    3  3  x 2  4 x  5 0  x  1 hoÆc x 5   x 5. 0.5. x2  x  2 y x  2 biết tiếp Viết phương trình tiếp tuyến của đồ thị hàm số. 1đ. tuyến song song với đường thẳng 3x + y - 2 = 0. Tiếp tuyến  song song với đường thẳng 3x + y - 2 = 0 nên có hệ số góc k = -3. Gọi (x0; y0) là tọa độ tiếp điểm, ta có k = -3 = y’(x0). x  3. Câu Vb .1. 0.5. 0.25 0.25. 4 4  y ' 1  , x  2 x2 (x  2) 2 .. y= y’(x0) = -3  (x0 + 2)2 = 1  x0 = -1 hoặc x0 = -3 Với x0 = -1, y0 = 0, ta có tiếp tuyến tại (-1; 0) là y = -3x - 3. Với x0 = -3, y0 = -10, ta có tiếp tuyến tại (-3; -10) là y = -3x - 19 Câu Vb ( 2 điểm) 1. Tính đạo hàm của các hàm số sau: a) y = x2.e4x b) y = ex.ln(2 + sinx). 0.25 0.25 1đ. a) y = x2.e4x y’ = (x2)’.e4x + x2.(e4x)’ = 2x.e4x + x2.(4x)’.e4x = 2x.e4x(1 + 2x). b) y = ex.ln(2 + sinx) y’ = (ex)’.ln(2 + sinx) + ex.(ln(2 + sinx))’. 0.25. (2  s inx)' cosx x x = e .ln(2 + sinx) + e . 2  s inx = e .ln(2 + sinx) + e . 2  s inx (d m ) : y mx  2m  16. 0.25. x. Câu. 0.25 1đ. 0.25 0.25. x. 2.Cho họ đường thẳng. với m là tham số .. 1đ.

<span class='text_page_counter'>(6)</span> Vb .2. Chứng minh rằng cố định I. (d m ). 3 2 luôn cắt đồ thị (C): y x  3x  4 tại một điểm. Phương trỉnh hoành độ điểm chung của (C) và. (d m ). :.  x 2 x3  3x2  4 mx  2m  16  (x  2)[x2  5x  (10  m)] 0    x2  5x  10  m 0 y 23  3.22  4 16 ; y = 2m  2m + 16 = 16 ,m  . Khi x = 2 ta có Do đó. (d m ). luôn cắt (C) tại điểm cố định I(2;16 ) .. 0.5 0.25 0.25.

<span class='text_page_counter'>(7)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×