Tải bản đầy đủ (.docx) (2 trang)

bai pt duong tron co ban hay

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (94.17 KB, 2 trang )

<span class='text_page_counter'>(1)</span>Bài 3: Phương trình của đường tròn trong mặt phẳng Oxy Bài tập điển hình : 1.Tìm tâm và bán kính của đường tròn có phương trình sau : a) ( x − 2 )2+ ( y +1 )2 =4 b) ( x+3 )2+ ( y − 1 )2=3 c) x 2+ y 2 − 4 x − 6 y − 3=0 d) x 2+ y 2 + 4 x − 6 y+ 2=0 e) 2 x 2 +2 y 2 −5 x +4 y+ 1=0 f) 7 x 2+7 y 2 − 4 x+ 6 y −1=0 g) x 2+ y 2 −2 x − 1=0 h) x 2+ y 2 =1 2. Viết phương trình đường tròn (C) trong các trường hợp sau : a) (C) có tâm I(1 ;-3) và bán kính R=7. b) (C) có tâm I(1;3) đi qua điểm A(3;1). c) (C) có đường kính AB với A(1;1) , B(7;5). d) (C) có tâm I(-2;0) và tiếp xúc với d: 2x + y – 1 = 0. e) (C) đi qua 3 điểm M(1;-2), N(1 ;2), P(5 ;2). f) (C) có tâm là giao điểm của đường thẳng d1 : x – 3y +1 = 0 với đường thẳng d2 : x = -4 đồng thời tiếp xúc với đường thẳng d3 : x + y -1 = 0. 3. Cho đường tròn (T) : x2 + y2 – 4x + 8y – 5 = 0. a) Viết phương trình tiếp tuyến của (T) tại A(-1 ;0). b) Viết phương trình tiếp tuyến của (T), biết tiếp tuyến đó // d : 2x – y = 0. c) Viết phương trình tiếp tuyến của (T), biết tiếp tuyến đó vuông góc với d’ : 4x – 3y + 1 = 0. d) Viết phương trình tiếp tuyến của (T), biết tiếp tuyến đi qua B(3 ;-11). e) Tìm m để đường thẳng d : x + (m – 1)y + m = 0 tiếp xúc với đường tròn (T). 4. Xét vị trí tương đối của các đường thẳng sau với đường tròn (C) : x2 + y2 – 2x - 2y - 2 = 0. a) d1 : x + y = 0. b) d2 : y + 1 = 0. c) d3 : 3x + 4y +5 = 0. 5. Lập phương trình đường tròn qua A(1 ;-2) và các giao điểm đường thẳng d: x – 7y + 10 = 0 với đường tròn (C) : x2 + y2 – 2x + 4y – 20 = 0. 6. Viết phương trình đường tròn đi qua M(2 ;1) đồng thời tiếp xúc với hai trục tọa độ. 7. Viết phương trình đường tròn có tâm nằm trên đường thẳng d : 4x + 3y – 2 = 0 và tiếp xúc với hai đường thẳng d1 : x + y + 4 = 0, d2 : 7x – y + 4 = 0. 8. Viết phương trình đường tròn (T), biết (T) đi qua hai điểm A(-1 ;2) ; B(-2 ;3) và có tâm ở trên đường thẳng d : 3x – y + 10 = 0. 9. Cho điểm M(2 ;4) và đường tròn (C) : x2 + y2 – 2x - 6y + 6 = 0. a) Tìm tâm và bán kính của đường tròn (C). b) Viết phương trình đường thẳng d qua M, cắt đường tròn tại hai điểm A, B sao cho M là trung điểm của AB. c) Viết phương trình tiếp tuyến của (C) song song với d. 10. Cho đường tròn (C) : ( x − 1 )2+ ( y +3 )2=25.

<span class='text_page_counter'>(2)</span> a) Tìm giao điểm A, B của đường tròn với trục ox. b) Gọi B là điểm có hoành độ dương, viết phương trình tiếp tuyến của (C) tại B. 11. Cho điểm A(8 ;-1) và đường tròn (C) : x2 + y2 – 6x - 4y + 4 = 0. a) Tìm tâm và bán kính của (C). b) Viết phương trình tiếp tuyến kẻ từ A. c) Gọi M, N là các tiếp điểm, tìm độ dài đoạn MN.. Bài tập vận dụng (BTVN ): 1. Viết phương trình đường tròn (C) trong các trường hợp sau: a) (C) có tâm I(2;1) và bán kính R = √ 7 b) (C) có tâm I(0;2) và đi qua điểm A(3; 1). c) (C) có đường kính AB với A(1; 3) và B(5; 1). d) (C) có tâm I(1; -2) và tiếp xúc với đường thẳng Δ : x − y=0 . e) (C) ngoại tiếp tam giác ABC với A(1; 2), B(5; 2), C(1; -3). f) (C) có tâm là giao điểm của đường thẳng d: x – 2y – 3 = 0 với trục Ox đồng thời tiếp xúc với đường thẳngd/: 2x + 3y + 7 = 0. 2. Xét vị trí tương đối của các đường thẳng sau với đường tròn (C): (x – 3)2 + (y – 2)2 = 4. a) Δ 1 : x − 1=0 b) Δ 2 : x − 2=0 c) Δ 3 :2 x+ y −1=0 . 3. Viết phương trình tiếp tuyến của đường tròn (T): x2 +y2 = 4 trong mỗi trường hợp sau: a) Biết tiếp điểm A(0; 2). b) Biết tt song song Δ:3 x − y +17=0 ❑ c) Biết tt vuông góc Δ : x − 2 y +2=0 d) Biết tt đi qua M(2; 2). e) Biết tt tạo với trục Ox một góc 45 0 f) Tìm m để đường thẳng d : x +my – 1 = 0 Tiếp xúc đường tròn (T). 4. Cho đường tròn (T) : x2 + y2 – 4x + 8y – 5 = 0. Viết pttt của (T) biết tiếp tuyến đó : a) Tiếp xúc với đương tròn tại A(-1 ; 0). b) Vuông góc với đường thẳng d: x + 2y = 0. c) Song song với đường thẳng d/: 3x - 4y – 9 = 0. d) Đi qua B(3; -11). e) Tìm m để đường thẳng Δ : x +(m−1) y+ m=0 có điểm chung với (T). -------------  -------------.

<span class='text_page_counter'>(3)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×