Tải bản đầy đủ (.pdf) (96 trang)

Phức chất kim loại chuyển tiếp với phối tử benzamidin ba càng dẫn xuất từ thiosemcacbazit

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.66 MB, 96 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------

Dƣơng Thu Trang

PHỨC CHẤT KIM LOẠI CHUYỂN TIẾP
VỚI PHỐI TỬ BENZAMIĐIN BA CÀNG DẪN XUẤT TỪ
THIOSEMICACBAZIT

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội – Năm 2012


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
---------------------

Dƣơng Thu Trang

PHỨC CHẤT KIM LOẠI CHUYỂN TIẾP
VỚI PHỐI TỬ BENZAMIĐIN BA CÀNG DẪN XUẤT TỪ
THIOSEMICACBAZIT

Chun ngành: Hóa Vơ Cơ
Mã số: 60 44 25
LUẬN VĂN THẠC SĨ KHOA HỌC

NGƢỜI HƢỚNG DẪN KHOA HỌC:
TS NGUYỄN HÙNG HUY



Hà Nội – Năm 2012


MỤC LỤC
DANH MỤC CÁC KÍ HIỆU VIẾT TẮT
MỤC LỤC HÌNH
MỤC LỤC BẢNG
MỞ ĐẦU .................................................................................................................. 1
Lý do chọn đề tài .................................................................................................. 2
Nội dung chính...................................................................................................... 2
CHƢƠNG 1 - TỔNG QUAN .................................................................................. 3
1.1. Giới thiệu về kim loại .................................................................................... 3
1.1.1. Tính chất chung của Paladi ..................................................................... 3
1.1.2. Khả năng tạo phức chất của Pd(II) .......................................................... 3
1.1.3. Một số phức chất điển hình của Pd(II) .................................................... 5
1.1.4. Vai trò sinh học của Palađi ...................................................................... 5
1.2. Giới thiệu về Benzamiđin .............................................................................. 7
1.2.1. Benzamiđin hai càng ............................................................................... 7
1.2.2. Benzamiđin ba càng ................................................................................ 8
1.2.2.1. Benzamiđin ba càng .......................................................................... 8
1.2.2.2. Benzamiđinba càng dẫn xuất từ thiosemicacbazit ............................ 9
1.2.3. Benzamiđin bốn càng .............................................................................. 16
1.3. Các phƣơng pháp nghiên cứu ........................................................................ 17
1.3.1. Phƣơng pháp phổ hồng ngoại IR ............................................................. 17
1.3.2. Phƣơng pháp phổ cộng hƣởng từ 1H-NMR............................................. 18
1.3.3. Phƣơng pháp phổ khối lƣợng ESI-MS .................................................... 19
1.3.4. Phƣơng pháp nhiễu xạ tia X đơn tinh thể ................................................ 20
1.4. Thử hoạt tính sinh học ................................................................................ 22
CHƢƠNG 2 - THỰC NGHIỆM .............................................................................. 23

2.1. Dụng cụ và hóa chất ...................................................................................... 23


2.1.1. Dụng cụ ................................................................................................... 23
2.1.2. Hóa chất ................................................................................................... 23
2.1.3. Chuẩn bị hóa chất .................................................................................... 24
2.2. Tổng hợp phối tử ........................................................................................... 24
2.2.1. Tổng hợp hai dẫn xuất của benzoylthioure ............................................. 24
2.2.2. Tổng hợp hai dẫn xuất phức chất niken(II) benzoylthioureato ............... 25
2.2.3. Tổng hợp hai dẫn xuất benzimiđoyl clorua ............................................. 25
2.2.4. Tổng hợp hai loại 4,4’-điankylthiosemicacbazit ..................................... 26
2.2.5. Tổng hợp phối tử benzamiđin ba càng H2L ............................................ 27
2.3. Tổng hợp phức chất ....................................................................................... 28
2.3.1. Tổng hợp phức chất [Pd(HL)Cl] ............................................................. 28
2.3.2. Tổng hợp phức chất [{Pd(L)}3]............................................................... 28
2.4. Các thông số kỹ thuật của máy đo áp dụng cho việc đo mẫu phức chất ....... 29
2.4.1. Phƣơng pháp phổ hồng ngoại IR ............................................................. 29
2.4.2. Phƣơng pháp phổ cộng hƣởng từ 1H NMR ............................................. 29
2.4.3. Phƣơng pháp phổ khối ESI-MS .............................................................. 30
2.4.4. Phƣơng pháp nhiễu xạ tia X đơn tinh thể ................................................ 30
2.5. Thử hoạt tính sinh học ................................................................................ 30
CHƢƠNG 3 - KẾT QUẢ VÀ THẢO LUẬN.......................................................... 31
3.1. Thảo luận về quá trình tổng hợp và nghiên cứu phối tử ................................ 31
3.1.1. Tổng hợp phối tử H2L ............................................................................. 31
3.1.2. Nghiên cứu phối tử H2L .......................................................................... 34
3.1.2.1. Nghiên cứu phối tử bằng phƣơng pháp IR ....................................... 34
3.1.2.2. Nghiên cứu phối tử bằng phƣơng pháp 1H NMR ............................. 37
3.1.2.3. Nghiên cứu phối tử bằng phƣơng pháp ESI-MS .............................. 42
3.2. Thảo luận về quá trình tổng hợp và nghiên cứu phức chất [Pd(HL)Cl] ........ 46
3.2.1. Tổng hợp phức chất [Pd(HL)Cl] ................................................................ 46

3.2.2. Nghiên cứu phức chất [Pd(HL)Cl] .......................................................... 46
3.2.2.1. Nghiên cứu phức chất [Pd(HL)Cl] bằng phƣơng pháp IR................ 46


1
3.2.2.2. Nghiên cứu phức chất [Pd(HLE5)Cl] bằng phƣơng pháp
H NMR
........................................................................................................................ 51

3.2.2.3. Nghiên cứu phức chất [Pd(HL)Cl] bằng phƣơng pháp ESI-MS ...... 53
3.2.2.4. Nghiên cứu phức chất [Pd(HLE5)Cl] bằng phƣơng pháp nhiễu xạ tia
X đơn tinh thể ................................................................................................ 56
3.3. Thảo luận về quá trình tổng hợp và nghiên cứu phức [{Pd(L)}3] ................. 60
3.3.1. Tổng hợp phức chất [{Pd(L)}3]............................................................... 60
3.3.2. Nghiên cứu phức chất [{Pd(L)}3] ........................................................... 61
3.3.2.1. Nghiên cứu phức chất [{Pd(L)}3] bằng phƣơng pháp IR ................. 61
3.2.2.2. Nghiên cứu phức chất [{Pd(L)}3] bằng phƣơng pháp 1H NMR ....... 65
3.3.2.3. Nghiên cứu phức chất [{Pd(LE7)}3] bằng phƣơng pháp nhiễu xạ tia X
đơn tinh thể .................................................................................................... 68
3.4. Kết quả thử hoạt tính sinh học ....................................................................... 72
KẾT LUẬN .............................................................................................................. 73
TÀI LIỆU THAM KHẢO ........................................................................................ 74
A. TÀI LIỆU TIẾNG VIỆT.................................................................................. 74
B. TÀI LIỆU TIẾNG ANH .................................................................................. 74
C. TRANG WEB .................................................................................................. 78


MỤC LỤC BẢNG

Bảng 3.1. Quy kết các dải hấp thụ trên phổ IR của phối tử H2L ............................ 35

Bảng 3.2 . Quy kết các tín hiệu trên phổ 1H NMR của các phối tử H2L ................ 38
Bảng 3.3. Quy kết các dải hấp thụ trên phổ IR của phức chất ................................. 49
Bảng 3.4. Quy kết các tín hiệu trên phổ 1H NMR của H2LE5 và [Pd(HLE5)Cl]. .... 52
Bảng 3.5. Một số độ dài liên kết và góc liên kết trong phức chất [Pd(HLE5)C]. ..... 57
Bảng 3.6. Một số thông tin về tinh thể phức chất [Pd(HLE5)C]. ............................. 58
Bảng 3.7. Quy kết các dải hấp thụ trên phổ IR của phức chất [{Pd(L)}3] .............. 62
Bảng 3.8. Bảng quy kết các tín hiệu phổ H1 của phức chất [{Pd(L)}3] .................. 67
Bảng 3.9. Một số thông tin về tinh thể phức chất [{Pd(LE7)}3]. ............................. 69
Bảng 3.10. Một số độ dài liên kết và góc liên kết trong phức chất [{Pd(LE7)}3]..... 69
Bảng 3.11. Kết quả thử hoạt tính sinh học ............................................................... 73


MỤC LỤC HÌNH

Hình 1.1. Sự tách mức năng lƣợng của các obitan d và sự sắp xếp electron của ion
Pd2+(d8) trong trƣờng đối xứng bát diện, bát diện lệch và vng phẳng. ................ 4
Hình 1.2. Benzamiđin ba càng dẫn xuất từ 2-aminophenol (1), 2(aminometyl)piriđin (2), axit antranilic (3), benzoylhiđrazin (4) và thiosemicacbazit
(5). ........................................................................................................................... 9
Hình 1.3. Sơ đồ tổng hợp benzamiđin ba càng dẫn xuất từ thiosemicacbazit ........ 10
Hình 1.4. Các dạng tautome hóa của H2L1 .............................................................. 11
Hình 1.5. Cấu trúc phân tử H2L1(a) (thiosemicacbazit). .......................................... 12
Hình 1.6. Cấu trúc phân tử H2L1(b) (thiosemicacbazon). ........................................ 12
Hình 1.7. Tổng hợp phức chất của {M=O}3+ với phối tử H2L. .............................. 13
Hình 1.8. Tổng hợp phức chất của {M≡N}2+ với phối tử H2L. ............................... 13
Hình 1.9. Phản ứng của Na[AuCl4] với phối tử H2L. .............................................. 14
Hình 1.10. Phức chất [AuIII(L)Cl] (a) và [AuI(L2)Cl](b) ...................................... 14
Hình 1.11. Cơ chế oxi hóa phối tử H2L bởi Au(III) ................................................ 14
Hình 1.12. Phối tử H2LE5 ......................................................................................... 16
Hình 1.13. Phối tử H2LE7 ......................................................................................... 16
Hình 1.14. Phối tử H2LM5 ........................................................................................ 16

Hình 1.15. Phối tử H2LM7 ....................................................................................... 16
Hình 3.1. Phổ IR của phối tử H2LM5 ....................................................................... 36
Hình 3.2. Phổ IR của phối tử H2LE7 ........................................................................ 36
Hình 3.3. Phổ 1H NMR của phối tử H2LE5 .............................................................. 37
Hình 3.4. Phổ 1H NMR của phối tử H2LM7 ............................................................. 37
Hình 3.5. Phổ MS của phối tử H2LM5. .................................................................... 43
Hình 3.6. Phổ MS của phối tử H2LE5. ..................................................................... 43
Hình 3.7. Tóm tắt cơ chế phân mảnh của các phối tử ............................................. 45
Hình 3.8. Phổ hồng ngoại của phối tử H2LE7và phức chất [Pd(HLE7)Cl]. .............. 47
Hình 3.9. Phổ hồng ngoại của phối tử H2LM5 và phức chất [Pd(HLM5)Cl]. ........... 48


Hình 3.10. Phổ 1H NMR của phức chất [Pd(HLE5)Cl] ........................................... 51
Hình 3.11. Phổ khối lƣợng của phức chất [Pd(HLE5)Cl]. ....................................... 54
Hình 3.12. Phổ khối lƣợng của phức chất [Pd(HLM5)Cl]. ...................................... 55
Hình 3.13. Cơ chế phân mảnh của phức chất [Pd(HLE5)Cl]. .................................. 55
Hình 3.14. Tinh thể phức chất [Pd(HLE5)Cl]. ......................................................... 56
Hình 3.15. Cấu trúc phân tử của phức chất [Pd(HLE5)C]. ...................................... 56
Hình 3.16. Phổ hồng ngoại của phối tử H2LE7; phức chất [Pd(HLE7)Cl] và phức chất
[{Pd(LE7)}3]. ............................................................................................................ 63
Hình 3.17. Phổ hồng ngoại của phối tử H2LM5; phức chất [Pd(HLM5)Cl] và phức
chất [{Pd(LM5)}3] .................................................................................................... 64
Hình 3.18. Phổ 1H NMR của phức chất [{Pd(LM5)}3] ............................................. 66
Hình 3.19. Phổ 1H NMR của phức chất [{Pd(LE7)}3] ............................................. 66
Hình 3.20. Cấu trúc phân tử của phức chất [{Pd(LE7)}3]. ....................................... 68
Hình 3.21. Tinh thể phức chất [{Pd(LE7)}3]. ........................................................... 68
Hình 3.22 . Cấu trúc vịng 6 cạnh tạo bởi Pd 1(a,b,c) và S2(a,b,c). ........................ 70


DANH MỤC CÁC KÍ HIỆU, CHỮ VIẾT TẮT

Phổ IR
Kí hiệu Chú giải

Kí hiệu Chú giải

y

cƣờng độ yếu

m

cƣờng độ mạnh

cƣờng độ trung bình

tb

Phổ 1H NMR
Kí hiệu Chú giải

Kí hiệu Chú giải

s

singlet

d

doublet


t

triplet

q

quartet

m

multiplet br

chân rộng

Kí hiệu các chất hóa học theo quy ƣớc chung
Kí hiệu Chú giải Kí hiệu Chú giải
Me

Metyl

Ph

Phenyl

Et

Etyl


Kí hiệu các chất tổng hợp đƣợc trong luận văn


H2 L

H2LE5

H2LE7

H2LM5

H2LM7


[Pd(HL)Cl]

[Pd(HLE5)Cl]

[Pd(HLM5)Cl]

[Pd(HLE7)Cl]

[Pd(HLM7)Cl]


[{Pd(L)}3]

[{Pd(LE5)}3]

[{Pd(LM5)}3]

[{Pd(LE7)}3]


[{Pd(LM7)}3]


MỞ ĐẦU
Benzamiđin hai càng là lớp phối tử vòng càng thơng dụng chứa nhóm
thioure, có cơng thức chung:

Với R1, R2, R3 = H, ankyl, aryl...
Hóa học phối trí của benzamiđin hai càng bắt đầu phát triển mạnh từ những
năm 1980. Giống nhƣ các dẫn xuất chứa nhóm thioure khác, hợp chất của
benzamiđin hai càng đƣợc quan tâm nhiều bởi hoạt tính sinh học của chúng. Cho
đến nay, phức chất của chúng với các kim loại chuyển tiếp đã đƣợc nghiên cứu đầy
đủ và hệ thống. Nếu nhóm thế R3 có thêm một nguyên tử cho khác có khả năng tạo
phức chất vịng càng thì phối tử này trở thành benzamiđin ba càng. Phức chất của
benzamiđin ba càng với các kim loại chuyển tiếp chắc chắn sẽ hứa hẹn nhiều điều
thú vị hơn so với benzamiđin hai càng. Mặc dù vậy, hiện nay phức chất của
benzamiđin ba càng mới đƣợc nghiên cứu chủ yếu với Re và Tc [13-20]. Những
nghiên cứu này tập trung trong lĩnh vực phát triển thuốc chứa đồng vị phóng xạ
188

Re và 99mTc. Bên cạnh đó, ngƣời ta còn phát hiện khả năng ức chế sự phát triển tế

bào ung thƣ vú ở ngƣời của benzamiđin ba càng dẫn xuất từ thiosemicacbazit và
phức chất của nó với Renioxo(V) (ReO3+) cao hơn hàng chục lần so với cis-platin
[17]. Các phức chất benzamdin ba càng với các kim loại chuyển tiếp khác mới đƣợc
nghiên cứu trong một vài năm trở lại đây, bao gồm: các phức chất của Ni(II), Cu(II)
và Pd(II) với benzamiđin dẫn xuất từ aminometyl piridin; và phức chất của Au(III)
với benzamiđin dẫn xuất từ thiosemicacbazit. Các phức chất này đều có hoạt tính
sinh học tốt, có khả năng ức chế tế bào ung thƣ vú ở ngƣời tốt.


1


Lý do chọn đề tài
Qua thống kê về tình hình nghiên cứu benzamiđin ba càng, có thể nói rằng
hố học phức chất của benzamiđin ba càng còn rất sơ khai. Việc tổng hợp các hệ
phối tử và nghiên cứu sự tạo phức của benzamiđin ba càng với kim loại chuyển tiếp
cịn thiếu tính hệ thống. Thêm vào đó hoạt tính sinh học của lớp hợp chất này có
triển vọng tốt nhƣng chƣa đƣợc quan tâm nhiều.
Phạm vi hƣớng nghiên cứu về benzamiđin ba càng rất rộng vì từ một khung
phối tử ban đầu, tiến hành thay đổi các nhóm thế, sử dụng các amin khác nhau nhƣ
amin kháng sinh, amin có hoạt tính sinh học mạnh trong các cây dƣợc liệu hoặc
thay bằng các axit amin, các peptit nhỏ...là có thể thu đƣợc những phối tử có hoạt
tính sinh học quý giá. Từ một phối tử tổng hợp đƣợc nhƣ vậy, tiến hành nghiên cứu
tạo phức với các kim loại chuyển tiếp d dãy thứ nhất, thứ hai, thứ ba, các nguyên tố
đất hiếm..., tìm điều kiện tạo phức ở các nhiệt độ, dung môi, xúc tác... khác nhau.
Tất cả những nghiên cứu ấy sẽ làm cơ sở để lựa chọn những hoạt chất tốt nhất ứng
dụng vào sản xuất thuốc chữa bệnh.
Nội dung chính
Nội dung bản luận văn này nhằm góp phần mở rộng các nghiên cứu về phức
chất của benzamiđin ba càng với các kim loại chuyển tiếp; trong đó, phối tử
benzamiđin ba càng đƣợc nghiên cứu là benzamiđin ba càng dẫn xuất từ
thiosemicacbazit và ion trung tâm là ion Pd2+. Các phức chất đƣợc tổng hợp dƣới
dạng rắn, sau đó đƣợc xác định cấu trúc và thử khả năng ức chế tế bào ung thƣ vú.

2


CHƢƠNG 1 - TỔNG QUAN

1.1. Giới thiệu về kim loại
1.1.1. Tính chất chung của Paladi
Palađi là kim loại chuyển tiếp thuộc nhóm VIIIB, chu kì 5, nằm ở ơ 46. Cấu
hình electron là [Kr]4d105s0 [7]. Cấu hình electron của Pd nhƣ vậy là do sự chênh
lệch mức năng lƣợng giữa 4d và 5s nhỏ hơn giữa 3d và 4s và điều này cũng tuân
theo quy luật là các obitan có số lƣợng tử chính càng lớn thì mức năng lƣợng sẽ
càng gần nhau.
Trong tự nhiên, Pd thƣờng tồn tại dƣới dạng tự sinh, hợp kim tự sinh hay các
quặng sunfua, asenua [4]. Pd2+ là một axít mềm, điều này cho phép dự đoán Pd2+ sẽ
tạo phức tốt với các phối tử chứa bazơ mềm nhƣ S, N.
Các mức oxi hóa có thể có của palađi là 0,[Pd(PPh3)3]; +1,[Pd2(PMe3)6]2+;
+2,[Pd(CN)4]2-; +3,Pd2(hpp)4Cl2; +4,[PdCl6]2-; các mức oxi hóa thƣờng gặp là +2 và
+4, trong đó mức +2 bền nhất, các hợp chất đơn giản và phức chất của Pd(II) đều
bền. Các hợp chất đơn giản của Pd(IV) có tính oxi hóa cao, dễ chuyển hóa thành
hợp chất Pd(II). Các phức chất của Pd(IV) bền hơn so với hợp chất Pd(IV) đơn giản
tuy nhiên số lƣợng của chúng tƣơng đối ít [4].
1.1.2. Khả năng tạo phức chất của Pd(II)
Pd(II) có khuynh hƣớng vƣợt trội đối với sự tạo thành các phức chất vuông
phẳng. Điều này là do tính chất đặc biệt của cấu hình electron d8, nên không những
chỉ Pd(II) mà cả những nguyên tố nằm cùng nhóm nhƣ Ni(II), Pt(II) cũng thể hiện
khuynh hƣớng nhƣ vậy. Tuy nhiên, khuynh hƣớng đó ở Pd(II) cịn mạnh hơn cả
Ni(II), bởi lẽ lực trƣờng phối tử tăng lên nhiều khi chuyển từ nguyên tử trung tâm
Ni(II) sang Pd(II) [7].

3


Hình 1.1. Sự tách mức năng lượng của các obitan d và sự sắp xếp electron của ion
Pd2+(d8) trong trường đối xứng bát diện, bát diện lệch và vuông phẳng.
Đối với phức chất vuông phẳng của Pd(II), 8 electron đƣợc xếp trên 4 obitan

dxz, dyz, dxy và d z . Trạng thái này có năng lƣợng thấp hơn nhiều so với trạng thái
2

trong phức chất bát diện lệch (hình 1.1).
Các phức chất vng phẳng của Pd (II) khơng có xu hƣớng kết hợp thêm
phối tử thứ năm, trong khi nguyên tố Ni(II) cùng nhóm lại có xu hƣớng này. Điều
này dẫn đến cơ chế của phản ứng thế phối tử của các phức chất Pd(II) là SN1 trong
khi cơ chế tƣơng ứng ở phức chất Ni(II) là SN2.
Trong lý thuyết chung về cấu tạo phức chất, liên kết giữa phối tử với ion
trung tâm khơng thuần túy là cộng hóa trị (thuyết VB) hay thuần túy ion (thuyết
trƣờng tinh thể) mà nó là một sự tổ hợp phức tạp của liên kết ion và liên kết cộng
hóa trị. Pd(II) có số lớp electron lớn nên chúng dễ bị phân cực hóa, dẫn đến bên
cạnh hợp phần ion thì liên kết giữa Pd(II) với phối tử có sự đóng góp của hợp phần

4


cộng hóa trị nhiều hơn, điều này làm cho liên kết giữa Pd(II) với phối tử thƣờng bền
hơn và khả năng tạo phức chất của Pd(II) cũng tốt.
Năng lƣợng bền hóa trong trƣờng vng phẳng của Pd(II) cao, nên chúng có
khả năng thể hiện phức chất vng phẳng cao, điều này thể hiện qua việc các
tetrahalogenua của Pd(II) đều có cấu dạng vng phẳng [6]. Cũng vì năng lƣợng
bền hóa ở phức chất Pd(II) lớn nên tính trơ động học của nó cũng cao, việc áp dụng
kết quả “ảnh hƣởng trans” vào việc điều chế các phức chất đó sẽ hiệu quả hơn.
1.1.3. Một số phức chất điển hình của Pd(II)
Phức chất của Pd(II) chủ yếu tồn tại dạng vuông phẳng, chẳng hạn:
[Pd(NH3)4]2+,[Pd(NH3)2Cl2], [PdCl2]n, [Pd(CN)4]2-... Trong một số trƣờng hợp đặc
biệt, phức chất Pd(II) có thể tồn tại dạng bát diện nhƣ [Pd(diars)2I2] hoặc lƣỡng
chóp tam giác nhƣ [Pd(diars)2Cl]+. Các phức chất của Pd có độ bền cao của liên kết
hóa học, do đó trơ về mặt động học. Một trong những phức chất quan trọng và tan

đƣợc là M[PdCl4] màu vàng. [1]
1.1.4. Vai trò sinh học của Palađi
Các phức chất của Pt(II) đƣợc biết đên nhiều bởi hoạt tính sinh học và ứng
dụng trong thuốc chữa nhiều loại ung thƣ khác nhau. Ví dụ nhƣ CisPlatin (phức
chất dạng cis của Pt với hai phối tử NH3 và hai phối tử Cl) có tác dụng ức chế sự
phát triển của tế bào ung thƣ; đƣợc sử dụng làm thuốc hóa trị liệu chống ung thƣ:
tinh hoàn, đầu, cổ, tử cung, phổi và bàng quang. Cis Platin tạo thành các liên kết
chéo bên trong và giữa các sợi DNA, nên làm thay đổi cấu trúc DNA và ức chế sự
tổng hợp DNA. [25]

H3N

NH3
Pt
Cl

Cl

5


Các phức chất tƣơng tự của Pd(II) cũng có hoạt tính ức chế tế bào ung thƣ,
tuy nhiên hoạt tính của phức chất Pd(II) thƣờng thấp hơn những phức chất tƣơng
ứng của Pt(II).
PdCl2 đã từng đƣợc dùng để điều trị bệnh lao, tuy nhiên nó có nhiều tác dụng
phụ tiêu cực vì thế sau này ngƣời ta thay thế PdCl2 bằng các loại thuốc khác.

6



1.2. Giới thiệu về Benzamiđin
1.2.1. Benzamiđin hai càng
Benzamiđin hai càng đầu tiên trên thế giới đƣợc tổng hợp thành công vào
năm 1982 bởi L.Bayer và các cộng sự [10]. Kể từ đó, có rất nhiều cơng trình nghiên
cứu về benzamiđin hai càng. Các phối tử dạng này thƣờng đƣợc sử dụng trong quá
trình tách chiết kim loại quý [12]. Nhiều phức chất benzamiđin có khả năng kháng
nấm, kháng khuẩn cao.
Để điều chế benzamiđin hai càng, thƣờng xuất phát từ benzamiđoyl clorua,
khi cho benzamiđoyl clorua phản ứng với NH3 hay các amin bậc một sẽ thu đƣợc
benzamiđin hai càng [10, 11]:

Trong dung dịch, benzamiđin hai càng tồn tại ở một số dạng tautome nằm
cân bằng với nhau, trong đó proton có thể định cƣ trên các nguyên tử N của khung
benzamiđin hay trên nguyên tử S của nhóm thioure:

Tuy nhiên ở trạng thái rắn, khi nghiên cứu cấu trúc đơn tinh thể của
benzamiđin ngƣời ta thấy rằng nguyên tử H thƣờng liên kết với N(1), trong một số
ít trƣờng hợp, nguyên tử H có thể định cƣ trên nguyên tử N(2) [10]. Sự tồn tại của
đồng phân chứa nhóm thiol (-SH) ở trạng thái rắn chƣa đƣợc xác nhận.
Benzamiđin hai càng tạo phức chất vòng 6 cạnh bền với hầu hết kim loại
chuyển tiếp qua nguyên tử cho là S và N. Phản ứng tạo phức chất thƣờng đi kèm
với quá trình tách một proton của khung benzamiđin và phối tử lúc này mang điện

7


tích 1–, điện tích âm này khơng định cƣ trên một nguyên tử nào mà đƣợc giải tỏa
trên năm nguyên tử phi kim của vòng chelat. Điều này làm tăng độ bền của các
phức chất tạo thành [12].
Thực nghiệm đã xác định rằng benzamiđin hai càng có xu hƣớng tạo thành

phức chất vuông phẳng ở dạng cis với các ion kim loại M2+ thuộc nhóm VIIIB (nhƣ
Ni2+, Pd2+, Pt2+) và kể cả Cu2+. Những tính tốn lƣợng tử cũng cho thấy dạng cis bền
hơn dạng trans [11]. Tuy nhiên do ảnh hƣởng của hiệu ứng khơng gian, khi nhóm
thế R3 có kích thƣớc lớn thì sự tạo thành phức chất dạng trans lại chiếm ƣu thế.

Trong một số trƣờng hợp, đặc biệt là phức chất của Ag+ và Au+ với
benzamiđin hai càng, chúng khơng tạo thành phức chất vịng càng mà ion trung tâm
chỉ liên kết với phối tử qua nguyên tử S nhƣ những phối tử thioure đơn giản.
1.2.2. Benzamiđin ba càng
1.2.2.1. Benzamiđin ba càng
Phải mất gần 30 năm sau kể từ khi các benzamiđin hai càng đầu tiên đƣợc
tổng hợp, đến cuối năm 2008 những benzamiđin ba càng đầu tiên dẫn xuất từ
2-aminophenol,

axit

2-(aminometyl)piriđin,

thiosemicacbazit mới đƣợc cơng bố (hình 1.2).

8

antranilic,

benzoylhiđrazin




Hình 1.2. Benzamiđin ba càng dẫn xuất từ 2-aminophenol (1),

2-(aminometyl)piriđin (2), axit antranilic (3), benzoylhiđrazin (4) và thiosemicacbazit (5).

Tƣơng tự nhƣ benzamiđin hai càng, benzamiđin ba càng có thể đƣợc điều
chế bằng phản ứng giữa benzamiđoyl clorua với các amin hai càng (hoặc nhiều
càng hơn). Tuy vậy phản ứng tổng hợp này thƣờng gặp nhiều khó khăn. Rất nhiều
amin hai càng phản ứng đƣợc với benzamiđoyl clorua nhƣng không tạo sản phẩm
benzamiđin ba càng mà tạo ra các hợp chất đóng vịng hoặc bị nhựa hóa. Ba yếu tố
quan trọng quyết định cho sự thành công của các phản ứng điều chế benzamiđin ba
càng là môi trƣờng phản ứng phải thật khan nƣớc, nhiệt độ thực hiện phản ứng phải
thấp (nhiệt độ phòng hoặc thấp hơn) và lƣợng trietylamin cho vào khi thực hiện
phản ứng phải rất dƣ, thƣờng dƣ 100 - 200% [13-20].
Benzamiđin ba càng là lớp phối tử mới đƣợc nghiên cứu trong một vài năm
trở lại đây nên số lƣợng phối tử và phức chất của chúng rất ít, điểm nổi bật là một
vài chất thuộc lớp phối tử này có hoạt tính sinh học rất cao. Do vậy hóa học của
chúng chắc chắn sẽ phát triển mạnh trong thời gian tới.

9


1.2.2.2. Benzamiđinba càng dẫn xuất từ thiosemicacbazit (H2L)

H2L(a): R1 = R2 = Et; R3, R4 = Me
H2L(b): R1 = R2 = Et; R3, R4 = (CH2)4
H2L(c): R1 = R2 = Et; R3, R4 = (CH2)5
H2L(d): R1 = R2 = Et; R3, R4 = (CH2)6
H2L(b): R1 = R2 = Morpholinyl; R3, R4 = (CH2)4
H2L(d): R1 = R2 = Morpholinyl; R3, R4 = (CH2)6

Hình 1.3. Sơ đồ tổng hợp benzamiđin ba càng dẫn xuất từ thiosemicacbazit
Các nghiên cứu gần đây [17, 20] cho thấy các phối tử benzamiđin ba càng

dẫn xuất từ thiosemicacbazit (H2L) có khả năng ức chế sự phát triển của tế bào ung
thƣ vú ở ngƣời rất mạnh. Các phối tử này đƣợc điều chế từ phản ứng giữa N[N’,N’-diankylamino

(thiocacbonyl)]

benzimidoyl

clorua

với

4,4-diankyl

thiosemicacbazit trong môi trƣờng aceton khô. Các phối tử benzamiđin 3 càng thu
đƣợc có thể tách trực tiếp từ hỗn hợp phản ứng, các sản phẩm đều không màu, tinh
khiết, dạng tinh thể. [14, 17]
Nhƣ vậy, bộ khung của các phối tử loại này gồm hai hợp phần: hợp phần
thiosemicacbazit và hợp phần thioure. Chính sự ảnh hƣởng qua lại giữa hai hợp
phần này tạo nên các hoạt tính sinh học tốt của chúng. Bằng cách thay thế các nhóm
ankyl thế R1, R2 ở phần thiourea hoặc các gốc R3, R4 ở phần thiosemicacbazit, rất
nhiều phối tử benzamiđin ba càng dẫn xuất từ thiosemicacbazit khác nhau đã đƣợc
tổng hợp và nghiên cứu. Sự thuận lợi trong việc dẫn xuất hóa phối tử loại này chính
là ƣu điểm lớn trong việc nghiên cứu ảnh hƣởng của cấu trúc tới hoạt tính sinh học
của chúng và cho phép tìm kiếm đƣợc những nhóm thế thích hợp cho phức chất có
hoạt tính sinh học tốt nhất.

10


Trong dung dịch, các phối tử benzamiđin ba càng cũng có thể tồn tại ở một

số dạng tautome nằm cân bằng với nhau, trong đó hai proton có thể định cƣ trên các
nguyên tử N hay trên nguyên tử S. [14, 17]

Hình 1.4. Các dạng tautome hóa của H2L1
Tuy nhiên, ở thể rắn, ngƣời ta chƣa phát hiện đƣợc sự tồn tại dạng tautome
(B, D, E, F) trong đó proton liên kết với nguyên tử S. Cho đến nay, chỉ hai dạng
tautome A và C đã đƣợc phân lập và nghiên cứu cấu trúc đơn tinh thể. Vị trí liên kết
của hai proton sẽ quyết định phối tử đó là thiosemicacbazit hay thiosemicacbazon.
Ở dạng tautome A (hình 1.4), nguyên tử N của hợp phần thiosemicacbazit liên kết
đơn với nguyên tử C của với hợp phần thioure nên trên nguyên tử N đó vẫn cịn một
ngun tử H. Do vậy, khi ở dạng tautome này, phối tử đƣợc coi là dẫn xuất của
thiosemicacbazit. Ngƣợc lại, nếu phối tử tồn tại dạng C (hình 1.4) sẽ đƣợc coi là
dẫn xuất của thiosemicacbazon, vì trong đó ngun tử N của hợp phần
thiosemicacbazit liên kết đôi với nguyên tử C của hợp phần thioure và trên ngun
tử N đó khơng cịn H nữa. Những nghiên cứu trƣớc, dựa vào chiều dài của các liên
kết, đã chỉ ra rằng: Ở phối tử H2L(a), do nguyên tử H nằm trên N5 và N7, nên phối
tử H2L(a) tồn tại ở dạng tautome A, và đƣợc coi là dẫn xuất của thiosemicacbazit

11


(hình 1.5). Ngƣợc lại, ở phối tử H2L(b), do nguyên tử H nằm trên N3 và N7, nên nó
tồn tại ở dạng tautome C, và đƣợc coi là dẫn xuất của thiosemicacbazon (hình 1.6).
[14, 20]

Hình 1.5. Cấu trúc phân tử H2L1(a) (thiosemicacbazit). Chiều dài liên kết (Å): S1C2 1,701(2); C2-N6 1,332(2); C2-N3 1,367(2); N3-C4 1,285(2); C4-N5 1,348(2);
N5-N7 1,380(2); N7-C8 1,372(2); C8-S9 1,669(2).

Hình 1.6. Cấu trúc phân tử H2L1(b) (thiosemicacbazon). Chiều dài liên kết (Å): S1C2 1,692(4); C2-N6 1,337(4); C2-N3 1,372(4); N3-C4 1,417(4); C4-N5 1,285(4);
N5-N7 1,374(4); N7-C8 1,361(4); C8-S9 1,680(4); C8-N51 1,342(4).


12


Phối tử benzamiđin ba càng dẫn xuất thiosemicacbazit hay thiosemicacbazon
có thể tạo những phức chất vòng càng bền vững với nhiều kim loại chuyển tiếp nhƣ
Re(V), Tc(V), Au(III). Khi tạo phức vịng càng với các kim loại đó, phối tử thƣờng
tách hai proton và mang điện tích 2- (kí hiệu {L}2-). Điện tích đó có thể đƣợc giải
tỏa đều trên các vòng càng với ion kim loại.
Khi phối tử H2L phản ứng với (NBu4)[MOCl4] (M = Re, Tc) sẽ tạo ra phức
chất chóp đáy vng của ReO (V) và TcO (V). Trong các phức chất đó vị trí đỉnh
chóp là phối tử oxo cịn ở mặt phẳng hình vng là ba nguyên tử cho S, N, S của
{L}2- và một phối tử cloro. [14, 17]

Hình 1.7. Tổng hợp phức chất của {M=O}3+ với phối tử H2L.
Khi cho H2L tác dụng với [MNCl2(PPh3)2] thì thu đƣợc phức chất chóp đáy
vng chứa nhân MN. Kiểu phối trí của phối tử hữu cơ {L}2- trong phức chất này
cũng giống nhƣ trong các phức chất oxo tƣơng ứng. Phối tử {L}2- phối trí phẳng và
liên kết phối trí với ion trung tâm qua các nguyên tử cho S, N, S. [14, 17]

Hình 1.8. Tổng hợp phức chất của {M≡N}2+ với phối tử H2L.
Đối với Au(III), với cấu hình d8, khi kết hợp với phối tử H2L tạo nên phức
chất vuông phẳng. Trong phức chất đó, phối tử cũng chiếm ba vị trí trong cầu phối

13


×