Tải bản đầy đủ (.pdf) (9 trang)

THE ROSSLER ATTRACTOR

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.72 KB, 9 trang )

<span class='text_page_counter'>(1)</span>THE ROSSLER ATTRACTOR The Tran. The Rossler system.  x' = − y − z  '  y = x + ay z' = b + z x − c ( ) . where a=1/4; b=1;. c ∈ [0, 7]. 1) Find all equilibrium.  x' = − y − z z = − y  ' −c ± c 2 − 4ab  ⇒  x = −ay ⇒y=  y = x + ay 2a z' = b + z x − c b + cy + ay 2 = 0 ( )   1 where a = ; b = 1; c ∈ [ 0, 7 ] 4 ⇒ y = −2c ± 2 c 2 − 1 + c < 1: No equilibrium. + c = 1:. 1 1  y = −2c ± 2 c 2 − 1 ⇒ y = −2 ; x = ; z = 2 so P1 =  ; − 2 ; 2  2 2 .

<span class='text_page_counter'>(2)</span> + c > 1:. y = −2c ± 2 c 2 − 1; x =. 1 c∓ 2. (. ). c 2 − 1 ; z = 2c ± 2 c 2 − 1. 1  ⇒ P2 =  c − c 2 − 1 ; − 2c + 2 c 2 − 1 ; 2c − 2 c 2 − 1  2  1  ⇒ P3 =  c + c 2 − 1 ; − 2c − 2 c 2 − 1 ; 2c + 2 c 2 − 1  ; c ∈ (1, 7] 2 . ( (. ) ). 2) Describe the bifurcation that occurs at c=1 Since a = 1/4; b = 1; c = 1.  x' = − y − z  1  ' y = x + y 4  '  z = 1 + z ( x − 1) Get the matrix from the equation system. 1  0 −1 −1  λ    1 1 0  ⇒ det ( λ I − A ) = det  −1 λ − A = 1 4 4     z 0 x − 1 − z 0    3 1 3  1  = λ3 −  − x  λ2 +  x + + z  λ +1− x − z = 0 4 4 4  4  + c = 1:. 1 x = ; y = −2 ; z = 2 2.   0   λ − x + 1 1.

<span class='text_page_counter'>(3)</span> The codes in Mathematica 7.0. ⇒ λ ( 8λ 2 + 2λ + 23) = 0 The eigenvalues of the linearized dynamics are found ⇒ λ = 0; λ =. 1 1 −1 − i 183 ; λ = −1 + i 183 8 8. (. ). (. ). There are two complex eigenvalues with negative real parts, so the equilibrium is an unstable.. The Graph in 3D space where c =1 The codes in Mathematica 7.0 f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→1}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].

<span class='text_page_counter'>(4)</span> 1  ⇒ P2 =  c − c 2 − 1 ; − 2c + 2 c 2 − 1 ; 2c − 2 c 2 − 1  2 . (. ).     λ 1 1   1   det ( λ I − A ) = det −1 0 λ−   4   1  −2c + 2 c 2 − 1 λ − c − c 2 − 1 + 1 0  2 . (. f (λ ) =. The codes in Mathematica 7.0. ).

<span class='text_page_counter'>(5)</span> 1 ⇒ P3 =  c + 2. (.  c 2 − 1 ; − 2c − 2 c 2 − 1 ; 2c + 2 c 2 − 1  . ).   λ 1  1 det ( λ I − A ) = det  −1 λ−  4   −2c − 2 c 2 − 1 0 .   1   0   1 λ − c + c 2 − 1 + 1 2 . ). (. f (λ ) =.   λ 1  1 det ( λ I − A ) = det  −1 λ−  4   −2c − 2 c 2 − 1 0 .     0   1 λ − c + c 2 − 1 + 1 2 . The codes in Mathematica 7.0. 1. (. ).

<span class='text_page_counter'>(6)</span> 3) Investige numerically the behavior of this system as c increases. What bifurcations do you observe? WHERE C =0 TO 7 f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→3}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].

<span class='text_page_counter'>(7)</span> 4) In Figure 14.12 we have plotted a single solution for c= 5.5. Computer other solutions for this parameter value, and display the results from other viewpoint R3. What conjectures do you make about the behavior of this system? + c = 5.5:. 1 11 ∓ 117 ; z = 11 ± 117 4 1   ⇒ P2 =  −11 + 117 ; 11 − 117 ;11 + 117  4   y = −11 ± 117; x =. (. ). (. ). 1   ⇒ P3 =  −11 − 117 ; 11 + 117 ;11 − 117  4  . (. ). f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→5.5}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].

<span class='text_page_counter'>(8)</span> Figure 14.12 The Rossler attractor. + Display the results from other viewpoint R3.

<span class='text_page_counter'>(9)</span>

<span class='text_page_counter'>(10)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×