Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.72 KB, 9 trang )
<span class='text_page_counter'>(1)</span>THE ROSSLER ATTRACTOR The Tran. The Rossler system. x' = − y − z ' y = x + ay z' = b + z x − c ( ) . where a=1/4; b=1;. c ∈ [0, 7]. 1) Find all equilibrium. x' = − y − z z = − y ' −c ± c 2 − 4ab ⇒ x = −ay ⇒y= y = x + ay 2a z' = b + z x − c b + cy + ay 2 = 0 ( ) 1 where a = ; b = 1; c ∈ [ 0, 7 ] 4 ⇒ y = −2c ± 2 c 2 − 1 + c < 1: No equilibrium. + c = 1:. 1 1 y = −2c ± 2 c 2 − 1 ⇒ y = −2 ; x = ; z = 2 so P1 = ; − 2 ; 2 2 2 .
<span class='text_page_counter'>(2)</span> + c > 1:. y = −2c ± 2 c 2 − 1; x =. 1 c∓ 2. (. ). c 2 − 1 ; z = 2c ± 2 c 2 − 1. 1 ⇒ P2 = c − c 2 − 1 ; − 2c + 2 c 2 − 1 ; 2c − 2 c 2 − 1 2 1 ⇒ P3 = c + c 2 − 1 ; − 2c − 2 c 2 − 1 ; 2c + 2 c 2 − 1 ; c ∈ (1, 7] 2 . ( (. ) ). 2) Describe the bifurcation that occurs at c=1 Since a = 1/4; b = 1; c = 1. x' = − y − z 1 ' y = x + y 4 ' z = 1 + z ( x − 1) Get the matrix from the equation system. 1 0 −1 −1 λ 1 1 0 ⇒ det ( λ I − A ) = det −1 λ − A = 1 4 4 z 0 x − 1 − z 0 3 1 3 1 = λ3 − − x λ2 + x + + z λ +1− x − z = 0 4 4 4 4 + c = 1:. 1 x = ; y = −2 ; z = 2 2. 0 λ − x + 1 1.
<span class='text_page_counter'>(3)</span> The codes in Mathematica 7.0. ⇒ λ ( 8λ 2 + 2λ + 23) = 0 The eigenvalues of the linearized dynamics are found ⇒ λ = 0; λ =. 1 1 −1 − i 183 ; λ = −1 + i 183 8 8. (. ). (. ). There are two complex eigenvalues with negative real parts, so the equilibrium is an unstable.. The Graph in 3D space where c =1 The codes in Mathematica 7.0 f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→1}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].
<span class='text_page_counter'>(4)</span> 1 ⇒ P2 = c − c 2 − 1 ; − 2c + 2 c 2 − 1 ; 2c − 2 c 2 − 1 2 . (. ). λ 1 1 1 det ( λ I − A ) = det −1 0 λ− 4 1 −2c + 2 c 2 − 1 λ − c − c 2 − 1 + 1 0 2 . (. f (λ ) =. The codes in Mathematica 7.0. ).
<span class='text_page_counter'>(5)</span> 1 ⇒ P3 = c + 2. (. c 2 − 1 ; − 2c − 2 c 2 − 1 ; 2c + 2 c 2 − 1 . ). λ 1 1 det ( λ I − A ) = det −1 λ− 4 −2c − 2 c 2 − 1 0 . 1 0 1 λ − c + c 2 − 1 + 1 2 . ). (. f (λ ) =. λ 1 1 det ( λ I − A ) = det −1 λ− 4 −2c − 2 c 2 − 1 0 . 0 1 λ − c + c 2 − 1 + 1 2 . The codes in Mathematica 7.0. 1. (. ).
<span class='text_page_counter'>(6)</span> 3) Investige numerically the behavior of this system as c increases. What bifurcations do you observe? WHERE C =0 TO 7 f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→3}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].
<span class='text_page_counter'>(7)</span> 4) In Figure 14.12 we have plotted a single solution for c= 5.5. Computer other solutions for this parameter value, and display the results from other viewpoint R3. What conjectures do you make about the behavior of this system? + c = 5.5:. 1 11 ∓ 117 ; z = 11 ± 117 4 1 ⇒ P2 = −11 + 117 ; 11 − 117 ;11 + 117 4 y = −11 ± 117; x =. (. ). (. ). 1 ⇒ P3 = −11 − 117 ; 11 + 117 ;11 − 117 4 . (. ). f={X,Y,Z}/.NDSolve[{ X'[t]-(Y[t]+Z[t]), Y'[t]X[t]+a Y[t], Z'[t]b+X[t]Z[t]-c Z[t], X[0]1,Y[0]1,Z[0]1}/.{a→0.25,b→1,c→5.5}, {X,Y,Z},{t,0,50}][[1]] ParametricPlot3D[Evaluate[Append[#[t]&/@f,Red]],{t,0,50},BoxRatios→{1 ,1,1},PlotRange→All,PlotPoints→1500,AxesLabel→TraditionalForm/@l].
<span class='text_page_counter'>(8)</span> Figure 14.12 The Rossler attractor. + Display the results from other viewpoint R3.
<span class='text_page_counter'>(9)</span>
<span class='text_page_counter'>(10)</span>