Tải bản đầy đủ (.doc) (15 trang)

Tài liệu Tài Liệu Về Chuyên Đề IPv6 pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (360.86 KB, 15 trang )

Tài Liệu Về Chuyên Đề IPv6
Như các bạn đã biết, mạng IPv4 mà hiện chúng ta đang sử dụng là chỉ có 32 bit nên số địa chỉ có thể đánh ra chỉ có khoảng 4
tỷ. Với mức độ tăng trưởng của Internet ngày càng lớn và số lượng người tham gia các hoạt động trên mạng ngày càng đông
như hiện nay thì trong một khoảng thời gian không lâu nữa, số lượng địa chỉ IP4 sẽ bị cạn kiệt. Vì thế việc chuyển sang IPv6 là
xu thế tất yếu. IPv6 có 128 bit, lớn hơn rất nhiều nên số địa chỉ sẽ không bị giới hạn. Đó là điểm mấu chốt cho thấy tại sao IPv6
lại cần thiết.
Tuy thế, việc chuyển sang IPv6 lại không đơn giản như đổi số điện thoại, và bạn nên nhớ một điều rằng một máy chạy IPv4
không thể liên lạc được với một máy chạy IPv6. Nên để chuyển đổi chắc cũng mất vài năm với tất cả router, server, client đều
phải chạy dual stacks. Có nghĩa là chạy IPv4 và IPv6 cùng một lúc. Nhưng cái cốt yếu hiện nay là ngay cả các nhà quản trị
mạng cũng bị hổng kiến thức về IPv6. Có người loay hoay suốt một tháng mới thiết lập xong một file server dựa trên chuẩn giao
thức Internet phiên bản 6.
Vì vậy hôm nay tui viết bài này để có thể cung cấp cho các nhà Quản Trị Mạng tương lai có cái nhìn tổng quan về IPv6 để chỉ
một vài năm tới nữa thôi IPv6 sẽ bắt đầu được triển khai. Lúc đó các bạn sẽ không quá ngỡ ngàng về điều này.
Trong cả hai hệ điều hành Windows Vista và Longhorn Server đều chạy hai giao thức IPv6 và IPv4, các giao thức này hiện nay
đang được sử dụng rất rộng rãi. Tuy nhiên có một vài tính năng trong các hệ điều hành này sẽ không làm việc trừ khi IPv6 được
sử dụng. Trong trường hợp đó chúng ta nên bắt đầu tìm hiểu thêm một chút về IPv6 xem chúng làm việc như thế nào. Nếu đó
không phải là một lý do đủ sức thuyết phục thì một lý do nữa là số lượng địa chỉ IPv4 có thể hoàn toàn cạn kiệt vào khoảng
2009. Chính vì vậy, chính phủ liên bang Mỹ dự kiến triển khai IPv6 đến tất cả các mạng xương sống được hoàn thành vào năm
2008.
Như vậy, giao thức IPv6 sẽ được sử dụng phổ biến trong một vài năm tới và chúng tôi viết loạt bài viết này như một cách nhằm
giới thiệu cho các bạn về giao thức IPv6.
Không gian địa chỉ IPv6
Sự khác nhau đáng kể nhất giữa hai giao thức này là chiều dài của địa chỉ nguồn và địa chỉ của chúng. Việc chuyển sang sử
dụng IPv6 là do ngày càng thiếu về số địa chỉ IP. Giao thức IPv6 này có một không gian địa chỉ lớn hơn so với giao thức IPv4.
Giao thức IPv4 sử dụng một địa chỉ nguồn và địa chỉ đích là 32bit. Các địa chỉ này được biểu diễn thành bốn phần. Một địa chỉ
IPv4 điển hình có dạng như 192.168.0.1.
Tương phản với IPv4, địa chỉ IPv6 có chiều dài là 128bit. Điều đó cho phép có thể biểu diễn đến 3.4x1038
(340.000.000.000.000.000.000.000.000.000.000.000.0 00) địa chỉ. Có một vài sự khác nhau trong cách biểu diễn địa chỉ của
IPv6. Một địa chỉ IPv6 thường được viết thành 8 nhóm, mỗi nhóm gồm có 4 số hex và mỗi nhóm được tách biệt với nhau bằng
dấu “:”. Ví dụ như sau thể hiện điều này 2001:0f68:0000:0000:0000:0000:1986:69af.
Bạn đang xem xét địa chỉ mẫu ở trên và nghĩ rằng việc đánh một địa chỉ IPv6 phải rất mất thời gian và công sức? Nhưng


không phải như vậy, địa chỉ IPv6 chỉ có thể được viết vắn tắt bằng việc giảm thiểu các số 0. Có hai nguyên tắc phải tuân theo ở
đây khi biểu diễn một địa chỉ IP. Đầu tiên, một dãy bốn số 0 liên tục có thể được thay thế bằng hai dấu “::”. Bằng cách đó địa
chỉ IPv6 ở trên có thể được viết tắt như sau: 2001:0f68::0000:0000:0000:1986:69af.
Trong ví dụ ở trên, chúng ta chỉ có thể ước lượng một khối các chữ số 0 bởi vì nguyên tắc này phát biểu rằng chỉ có một cặp
“::” trong một địa chỉ. Rõ ràng, địa chỉ mà đang ví dụ ở trên vẫn còn rất nhiều chữ số cần phải đánh. Tuy nhiên, nguyên tắc thứ
hai sẽ cho phép bạn thực hiện địa chỉ này ngắn hơn. Nguyên tắc thứ hai nói rằng, các số 0 trong một nhóm có thể được bỏ qua.
Nếu một khối 4 số bắt đầu của nó là số 0 thì số 0 này có thể được lược bỏ bớt để lại là 3 số 0 trong khối. Nếu khối ba số đó
cũng lại bắt đầu với một số 0 đứng đầu thì ta có thể tiếp tục loại bỏ. Và cứ như vậy đến khi gặp số khác 0 trong nhóm thì dừng.
Trường hợp nếu 4 số trong nhóm đều là 0 thì số được giữ lại cuối cùng là một số 0. Nếu cứ nói mãi mà không biểu diễn trong
ví dụ cụ thể để các bạn dễ theo dõi thì đó là một thiếu sót. Dưới đây là những gì mà chúng ta có thể áp dụng cả hai nguyên tắc
đó cho địa chỉ ví dụ:
2001:0f68:0000:0000:0000:0000:1986:69af
2001:f68:000:000:000:000:1986:69af
2001:f68:00:00:00:00:1986:69af
2001:f68:0:0:0:0:1986:69af
2001:f68::1986:69af
Lưu ý rằng trong mỗi dòng, chúng tôi đã lược bỏ bớt một số 0 trong mỗi nhóm. Khi mà các phần còn lại là các con số 0 chúng
ta lại có thể áp dụng thay thế 4 số 0 liên tiếp bằng hai dấu “::”. Điều này chỉ có thể thực hiện được nếu bốn số 0 đi liền nhau mà
thôi. Nếu không thỏa mãn điều kiện đó thì chúng ta phải để nguyên các số 0.
Bài viết này sẽ tiếp tục giới thiệu cho các bạn giao thức IPv6 bằng cách thảo luận về việc định dạng
địa chỉ và các loại địa chỉ khác nhau của IPv6.
Nếu đã quen với IPv4 thì bạn phải biết rằng một địa chỉ IPv4 gồm có 4 phần, mỗi phần được phân biệt với nhau bằng dấu
chấm. Một phần trong địa chỉ này biểu thị số mạng và các bit còn lại dùng để phân biệt một host cụ thể trên mạng. Số của các
bit thực được thiết kế cho số mạng và số host khác nhau phụ thuộc vào subnet mask.
Một địa chỉ IPv4 được chia thành các phần khác nhau, trong địa chỉ IPv6 cũng vậy. Trong bài trước, bạn đã biết được về các
địa chỉ IPv6 có 128 bit chiều dài. Khi một địa chỉ IPv6 được viết theo dạng đầy đủ, nó được diễn tả thành 8 phần khác nhau,
mỗi phần có 4 số và được phân tách bằng dấu “:”. Mỗi phần có 4 chữ số này biểu thị 16 bit dữ liệu, mỗi trường 16 bit này lại
được sử dụng cho các mục đích riêng biệt.
Cụ thể, mỗi một địa chỉ IPv6 được phân thành ba phần khác nhau đó là: site prefix, subnet ID, interface ID. Ba thành phần
này được nhận dạng bởi vị trí của các bit bên trong một địa chỉ. Ba trường đầu tiên trong IPv6 được biểu thị site prefix, trường

tiếp theo biểu thị subnet ID còn 4 trường cuối biểu thị cho interface ID.
Site prefix cũng giống như số mạng của IPv4. Nó là số được gán đến trang của bạn bằng một ISP. Điển hình, tất cả các máy
tính trong cùng một vị trí sẽ được chia sẻ cùng một site prefix. Site prefix hướng tới dùng chung khi nó nhận ra mạng của bạn
và cho phép mạng có khả năng truy cập từ Internet.
Không giống như site prefix, subnet ID mang tính riêng bởi vì nó ở bên trong mạng của bạn, subnet ID miêu tả cấu trúc trang
của mạng. Subnet ID làm việc rất giống với cách mà mạng con làm việc trong giao thức IPv4. Sự khác nhau lớn nhất ở đây là
các mạng có đó có thể dài 16 byte là được biểu thị trong định dạng hex nhiều hơn là ký hiệu chữ thập phân có nhiều dấu chấm.
Một IPv6 subnet điển hình tương đương với một nhánh mạng đơn (trang) như một subnet của IPv4.
Interface ID làm việc giống như một ID cấu hình IPv4. Số này nhận dạng duy nhất một host riêng trong mạng. Interface ID
(thứ mà đôi khi được cho như là một thẻ) được cấu hình tự động điển hình dựa vào địa chỉ MAC của giao diện mạng. ID giao
diện có thể được cấu hình bằng định dạng EUI-64.
Để xem một địa chỉ IPv6 được phân chia như thế nào thành các phần con khác nhau của nó, bạn hãy quan sát đến địa chỉ dưới
đây:
2001:0f68:0000:0000:0000:0000:1986:69af
Phần site prefix của địa chỉ này là: 2001:0f68:0000. Trường tiếp theo là 0000 biểu thị subnet ID. Các byte còn lại
(0000:0000:1986:69af) biểu thị interface ID.
Điển hình khi một tiền tố được biểu diễn, nó được viết trong một định dạng đặc biệt. Các số 0 trong đó đã giải thích trong bài
viết trước và các tiền tố được theo sau bởi một dấu sổ và số. Số sau dấu sổ chỉ số lượng của các bit trong tiền tố. Trong ví dụ
trước tôi đã đề cập đến site prefix cho địa chỉ 2001:0f68:0000:0000:0000:0000:1986:69af là 2001:0f68:0000. Khi tiền tố này
có chiều dài 48 bit thì chúng ta nên thêm vào đó a /48 để kết thúc nó hợp thức. Với các con số 0 đã bỏ, tiền tố đó sẽ viết như
sau: 2001:f68::/48
Các loại địa chỉ IPv6
IPv6 có ba loại địa chỉ khác nhau: Unicast, Multicast và Anycast.
Địa chỉ Unicast được sử dụng để phân biệt các host đơn lẻ trên một mạng. Các địa chỉ Multicast lại sử dụng để phân biệt một
nhóm các giao diện mạng cư trú điển hình trong các máy tính phức hợp. Khi một gói dữ liệu được gửi đến địa chỉ multicast thì
gói đó được gửi đến tất cả các giao diện mạng trong nhóm multicast.
Giống như các địa chỉ multicast, các địa chỉ anycast cũng phân biệt một nhóm cụ thể các giao diện mạng thường cư trú trong
các máy tính phức hợp. Vậy cái gì tạo tuyến anycast khác với một nhóm multicast? Khi các gói được gửi đi đến một địa chỉ
multicast chúng được gửi đến tất cả các giao diện mạng trong nhóm. Trái ngược với điều đó, khi các gói dữ liệu được gửi đi
đến một địa chỉ anycast thì các gói này không gửi đến toàn bộ nhóm mà thay vì đó chúng chỉ được gửi đến thành viên gần

nhất.Khái niệm gần nhất do metric của giao thức định tuyến hiện thời quyết định
Các địa chỉ Unicast
Chúng tôi đã giới thiệu cho các bạn định dạng của một địa chỉ IPv6 và những vị trí bit khác nhau được sử dụng. Quả thực có
hai loại địa chỉ unicast khác nhau đó là: toàn cục và liên kết cục bộ. Một địa chỉ unicast toàn cục có thể truy cập rộng rãi trong
khi đó địa chỉ unicast liên kết cục bộ chỉ có thể truy cập đến các máy tính khác mà chia sẻ liên kết. Định dạng địa chỉ IP mà tôi
đã giới thiệu cho các bạn ở phần trước là một địa chỉ unicast toàn cục. Chúng tôi đã nói về loại địa chỉ này bởi vì nó là loại địa
chỉ chung nhất.
Các địa chỉ unicast liên kết cục bộ đã sử dụng một định dạng địa chỉ khác với các địa chỉ unicast toàn cục. Giống như các địa
chỉ unicast toàn cục, các địa chỉ unicast liên kết cục bộ cũng gồm 128 byte chiều dài. Sự khác nhau ở hai loại này là các byte
được phân phối khác nhau và địa chỉ sử dụng một site prefix đặc biệt.
Trong một địa chỉ unicast liên kết nội bộ, một site prefix chiếm 10 bit đầu tiên của địa chỉ thay vì 48 bit đầu như trong trường
hợp của địa chỉ unicast toàn cục. Site prefix được sử dụng bằng một địa chỉ unicast liên kết cục bộ là: fe80.
Khi site prefix được viết ngắn lại (so với một địa chỉ unicast toàn cục), bạn có thể không ngạc nhiên khi thấy rằng số lượng của
không gian chỉ định trong subnet ID đã được mở rộng từ 16 bit thành 64 bit. Những gì ở đây là 64 bit đó không thực sự được
sử dụng. Nhớ rằng một địa chỉ IP liên kết cục bộ chỉ hợp lệ cho các máy tính đang chia sẻ một liên kết chung. Như vậy, không
có lý do nào để cần phải có một subnet ID. 64 bit của không gian địa chỉ mà được dành riêng cho subnet ID được biểu diễn
như những số 0.
Interface ID cho một địa chỉ unicast liên kết cục bộ có chiều dài 54 bit. Interface ID hầu như luôn được bắt nguồn từ 48 bit địa
chỉ MAC đã gán vào card giao diện mạng để giao thức được phân danh giới. Dưới đây là một ví dụ về một địa chỉ unicast liên
kết cục bộ.
Fe80:0000:0000:0000:0000:0000:23a1:b152
Tất nhiên khi các địa chỉ IPv6 được viết ra thì chúng thường được diễn tả với một loạt con số 0 đã bị triệt tiêu. Chính vì vậy,
một công thức viết tắt đúng kỹ thuật địa chỉ này là:
Fe80::23a1:b152
Khi các địa chỉ đã diễn tả với các số 0 đã bị triệt tiêu, thì địa chỉ đầu tiên trông giống như bất kỳ địa chỉ IPv6 nào. Nhớ rằng
bạn có thể nói được sự khác nhau giữa một địa chỉ unicast liên kết cục bộ với các địa chỉ khác bởi vì một địa chỉ unicast cục bộ
sẽ luôn luôn bắt đầu với fe80.
Địa chỉ Multicast
Như chúng tôi đã giải thích ở phần trước, các địa chỉ multicast được sử dụng để nhận dạng một nhóm các giao diện mạng,
được biết đến như một nhóm multicast. Các giao diện mạng điển hình được định vị trên các máy tính phức hợp nhưng đây

không phải là một thiết bị thuần túy. Các địa chỉ multicast được sử dụng để gửi thông tin đến bất kỳ giao diện mạng nào đã
được định nghĩa thuộc về nhóm multicast.
Một trong những điều thú vị nhất về các địa chỉ multicast đó là chúng hoàn toàn riêng biệt, một giao diện mạng có một địa chỉ
multicast không có nghĩa là máy đó không thể có một địa chỉ unicast hoặc là nằm trong các nhóm multicast khác Trong thực
tế, một vài hệ điều hành đã thêm vào đó một adapter mạng của máy tính đối với các nhóm multicast khác nhau tại thời điểm
địa chỉ unicast của adapter được định nghĩa. Ví dụ: hệ điều hành Solaris tự động thêm vào các adapter mạng vào nút Solicited
và các nhóm multicast tất cả các nút (hoặc tất cả các router). Trong trường hợp bạn không quen với Solaris, nhóm nút Solicited
được sử dụng cho việc phát hiện ra IPv6 khác đã kích hoạt các thiết bị trên mạng. Windows Vista cũng có một chức năng
tương tự.
Chúng tôi đã giải thích cho các bạn nghe về các địa chỉ multicast được sử dụng cho những địa chỉ multicast trông như thế nào.
Mặc dù một địa chỉ IPv6 dài 128 bit nhưng 8 bit đầu tiên của địa chỉ lại định nghĩa cho địa chỉ multicast. Mỗi một địa chỉ
multicast sử dụng một định dạng tiền tố là 11111111. Khi được biểu diễn trong ký hiệu hex và “:” thì một địa chỉ multicast
luôn luôn bắt đầu bằng FF.
Bốn bit tiếp theo của địa chỉ multicast là các bit cờ (flag). Tại thời điểm hiện tại, ba bit đầu trong nhóm bốn bit là không dùng
đến (chính vì vậy chúng được thiết lập là 0). Bit cờ thứ tư được biết đến như một bit nốt đệm. Nhiệm vụ của nó là để biểu thị
xem địa chỉ đó là một địa chỉ tạm thời hay thường xuyên. Nếu địa chỉ đó là địa chỉ thường xuyên thì bit này sẽ được gán bằng
0 còn ngược lại nó sẽ được gán bằng 1.
Bốn bit tiếp theo trong địa chỉ multicast được biết đến như các bit ID Scope. Số lượng của không gian dự trữ cho các bit Scope
ID là 4 bit, điều đó có nghĩa là có 16 giá trị khác nhau được biểu thị. Mặc dù không phải tất cả 16 giá trị đều được sử dụng tại
thời điểm hiện tại, 7 trong số các giá trị đó được sử dụng để xác định phạm vi của địa chỉ. Ví dụ: nếu một địa chỉ có phạm vi
toàn cầu thì địa chỉ là hợp lệ trên toàn bộ Internet. Hiện tại đã sử dụng các bit Scope ID như sau:
112 bit còn lại được sử dụng cho nhóm ID. Kích thước của nhóm ID cho phép các địa chỉ multicast dùng hết 1/256 phần không
gian địa chỉ của IPv6.
Để đặt lược đồ địa chỉ này trong phần sắp tới, chúng tôi cho bạn xem một số địa chỉ multicast được sử dụng thường xuyên
nhất:
FF0x0:0:0:0:0:1
Đây là một multicast cho tất cả các nút. Bạn có thể phải lưu ý đến chữ “x” trong địa chỉ, nó không phải là một kí tự hệ số hex.
Nó là một trình giữ chỗ cho phạm vi. Địa chỉ cụ thể này có thể sử dụng phạm vi nút nội bộ (FF01:0:0:0:0:0:1) hoặc phạm vi
liên kết nội bộ (FF02:0:0:0:0:0:1).
FF0x:0:0:0:0:0:2

Địa chỉ multicast này được gán cho tất cả các router bên trong phạm vi đã định nghĩa. Ở đây cũng có kí tự “x”, nó cũng có
chức năng tương tự. Các phạm vi hợp lệ là nút nội bộ (FF01:0:0:0:0:0:2), liên kết nội bộ (FF02:0:0:0:0:0:2) và trang nội bộ
(FF05:0:0:0:0:0:2).
Địa chỉ Anycast
Nếu đã nghiên cứu giao thức IPv4 thì bạn có thể biết được rằng các khái niệm của unicast và multicast cũng tồn tại ở IPv4,
mặc dù vậy ở IPv6 chúng được bổ sung nhiều vấn đề khác. Anycast là duy nhất với IPv6. Anycast làm việc giống như một sự
kết hợp các địa chỉ unicast và multicast. Một địa chỉ unicast được sử dụng để gửi dữ liệu đến một người nhận cụ thể nào đó,
một địa chỉ multicast được sử dụng để gửi dữ liệu đến một nhóm người nhận còn một địa chỉ anycast thì được sử dụng để gửi
dữ liệu đến một người nhận cụ thể ở ngoài nhóm người nhận.
Trong trường hợp bạn đang phân vân rằng anycast được tạo như một cách làm cân bằng tải trở lên dễ dàng hơn. Hãy hình dung
một tình huống bạn cần cung cấp một số lượng lớn người dùng để họ có thể truy cập đến các dịch vụ hoặc đến một router của
họ. Trong tình huống như vậy thì nó thường làm cho bạn phải sử dụng nhiều máy chủ để cấu hình dịch vụ đang được cung cấp
hoặc sử dụng các router phức hợp hay bất cứ trường hợp nào có thể. Lý do ở đây là vì nó có thể cho phép phân phối luồng
công việc giữa các thiết bị phức hợp.
Loại cân bằng tải này thực hiện rất khó khăn nếu sử dụng Ipv4 (mặc dù nó đã được thực hiện). Siệc sử dụng các địa chỉ anycast
với IPv6 sẽ cho hiệu quả tuyệt đối với việc cân bằng tải. Bạn cần gửi một yêu cầu người dùng đến một trong những thiết bị,
trong khi không thể quan tâm đến các thiết bị đã được chỉ định quản lý yêu cầu mà chỉ là yêu cầu phải được quan tâm. Bằng
việc sử dụng các địa chỉ anycast, mỗi yêu cầu sẽ tự động gửi đến thiết bị gần nhất về mặt địa lý đến máy tính đưa ra yêu cầu.
Trong một số tình huống, anycast thậm có thể được sử dụng để cung cấp lỗi dung sai cho một router lỗi. Lỗi có thể được phát
hiện và các yêu cầu có thể được gửi lại vòng qua một router khác lân cận.
Vấn đề kỳ lạ nhất với các địa chỉ anycast là không có lược đồ định địa chỉ đặc biệt nào. Với những gì trong bài viết này, bạn đã
thấy được có rất nhiều loại nguyên tắc bao trùm sử dụng và cấu trúc của các địa chỉ unicast và multicast là để gán cùng một địa
chỉ unicast cho các host phức hợp. Với cách làm như vậy các địa chỉ unicast trở thành một địa chỉ anycast.
I. Lợi ích của IPv6:
Một trong những lý do chính để phát triển một phiên bản mới của IP đó là việc địa chỉ IPv4 lớp B đang hết dần. Hình vẽ sau
mô tả tình hình hiện nay của IPv4, và tầm địa chỉ hiện có của IPv4, qua đó ta thấy dự đoán có thể hết địa chỉ vào khoảng năm
2010 hay sớm hơn.
[font=Tahoma]Các vấn đề về bảo mật, các tùy chọn của IP và hiệu suất định tuyến. Các ích lợi của IPv6 gồm: Tăng kích thước
của tầm địa chỉ IP; tăng sự phân cấp địa chỉ; đơn giản hoá địa chỉ host (địa chỉ được thống nhất là: toàn cục, site và cục bộ) ;
đơn giản hoá việc tự cấu hình địa chỉ (gồm DHCPv6 và neighbor discovery thay cho ARP broadcast); tăng độ linh hoạt cho

định tuyến multicast; có thêm địa chỉ anycast; header được sắp xếp hợp lý; tăng độ bảo mật (vì có thêm các header mở rộng về
bảo mật giúp bảo đảm sự toàn vẹn dữ liệu); có tính di động tốt hơn (home agent; care-of-address; và header định tuyến mở
rộng); hiệu suất tốt hơn (việc tóm tắt địa chỉ; giảm ARP broadcast; giảm sự phân mảnh gói tin; không có header checksum;
QoS được tích hợp sẵn...).
1. Tăng kích thước của tầm địa chỉ:
IPv6 sử dụng 128 bit địa chỉ trong khi IPv4 chỉ sử dụng 32 bit; nghĩa là IPv6 có tới 2^128 địa chỉ khác nhau; 3 bit đầu luôn là
001 được giành cho các địa chỉ khả định tuyến toàn cầu (Globally Routable Unicast –GRU). Nghĩa là còn lại 2^125 địa chỉ,
nghĩa là có khoảng 4,25.10^37 địa chỉ, trong khi IPv4 chỉ có tối đa 3,7.10^9 địa chỉ, nghĩa là IPv6 sẽ chứa 10^28 tầm địa chỉ
IPv4.
2. Tăng sự phân cấp địa chỉ:
IPv6 chia địa chỉ thành một tập hợp các tầm xác định hay boundary:
Ba bit đầu cho phép biết được địa chỉ có thuộc địa chỉ khả định tuyến toàn cầu (GRU) hay không, giúp các thiết bị định
tuyến có thể xử lý nhanh hơn. Top level aggregation (TLA) ID được sử dụng vì 2 mục đích: thứ nhất, nó được sử dụng để chỉ
định một khối địa chỉ lớn mà từ đó các khối địa chỉ nhỏ hơn được tạo ra để cung cấp sự kết nối cho những địa chỉ nào muốn
truy cập vào Internet; thứ hai, nó được sử dụng để phân biệt một đường (route) đến từ đâu. Nếu các khối địa chỉ lớn được cấp
phát cho các nhà cung cấp dịch vụ và sau đó được cấp phát cho khách hàng thì sẽ dễ dàng nhận ra các mạng chuyển tiếp mà
đường đó đã đi qua cũng như mạng mà từ đó route xuất phát. Với IPv6, việc tìm ra nguồn của 1 route sẽ rất dễ dàng.
Next level aggregator(NLA) là một khối địa chỉ được gán bên cạnh khối TLA, những địa chỉ này được tóm tắt lại thành
những khối TLA lớn hơn, khi chúng được trao đổi giữa các nhà cung cấp dịch vụ trong lõi internet, ích lợi của loại cấu trúc địa
chỉ này là: thứ nhất là sự ổn định về định tuyến, nếu chúng ta có 1 NLA và muốn cung cấp dịch vụ cho các khách hàng, ta sẽ
cố cung cấp dịch vụ đầy đủ nhất, tốt nhất; bên cạnh đó, chúng ta cũng muốn cho phép các khách hàng của chúng ta nhận được
đầy đủ bảng định tuyến nếu họ muốn để tạo việc định tuyến theo chính sách; cân bằng tải... để thực hiện việc này chúng ta phải
mang tất cả các đường trong backbone để có thể chuyển cho họ.
3. Đơn giản hoá việc đặt địa chỉ host:
IPv6 sử dụng 64 bit sau cho địa chỉ host, và trong 64 bit đó thì có cả 48 bit là địa chỉ MAC của máy, do đó phải đệm vàođó
một số bit đã được định nghĩa trước mà các thiết bị định tuyến sẽ biết được những bit này trên subnet, ngày nay, ta sử dụng
chuỗi 0xFF và 0xFE (:FF:FE: trong IPv6) để đệm vào địa chỉ MAC. Bằng cách này, mọi host sẽ có một host ID duy nhất trong
mạng. Sau này nếu đã sử dụng hết 48 bit MAC thì có thể sẽ sử dụng luôn 64 bit mà không cần đệm.
4. Việc tự cấu hình địa chỉ đơn giản hơn:
một địa chỉ multicast có thể được gán cho nhiều máy, địa chỉ anycast là các gói anycast sẽ gửi cho đích gần nhất (một trong

những máy có cùng địa chỉ) trong khi multicast packet được gửi cho tất cả máy có chung địa chỉ (trong một nhóm multicast).
Kết hợp host ID với multicast ta có thể sử dụng việc tự cấu hình như sau: khi một máy được bật lên, nó sẽ thấy rằng nó đang
được kết nối và nó sẽ gửi một gói multicast vào LAN; gói tin này sẽ có địa chỉ là một địa chỉ multicast có tầm cục bộ(Solicited
Node Multicast address). Khi một router thấy gói tin này, nó sẽ trả lời một địa chỉ mạng mà máy nguồn có thể tự đặt địa chỉ,
khi máy nguồn nhận được gói tin trả lời này, nó sẽ đọc địa chỉ mạng mà router gửi, sau đó, nó sẽ tự gán cho nó một địa chỉ
IPv6 bằng cách thêm host ID (được lấy từ địa chỉ MAC của interface kết nối với subnet đó) với địa chỉ mạng=>tiết kiệm được
công sức gán địa chỉ IP.
5. Tăng độ linh hoạt cho định tuyến multicast:
Đặt trường hợp: giám đốc muốn gửi một hội nghị truyền hình đến các nhân viên trong công ty mà không muốn gửi tất cả mọi
người trong internet (chỉ gửi những người cần xem), lúc đó, IPv6 có một khái niệm về tầm vực multicast. Với IPv6, bạn có thể
thiết kế một luồng multicast xác định chỉ được gửi trong một khu vực nhất định và không bao giờ cho phép các packet ra khỏi
khu vực đó.
8 bit đầu luôn được thiết lập là 1 giúp các thiết bị định tuyến biết được gói tin này là một gói tin multicast. 4 bit sau là flag
(hiện tại, 3 bit đầu không được định nghĩa và luôn là 0, bit thứ tư là T bit được sử dụng để quyết định xem địa chỉ multicast này
là địa chỉ được gán lâu dài (được gọi là well-known) hay tạm thời (transient). 4 bit tiếp theo là scope, xác định gói tin multicast
có thể đi bao xa, trong khu vực nào thì gói tin được định tuyến; scope có thể có các giá trị sau: 1(có tầm trong nội bộ node); 2
(có tầm trong nội bộ liên kết); 5 (có tầm trong nội bộ site); 8 (có tầm trong nội bộ tổ chức); E (có tầm toàn cục).
Tuỳ vào cách gán địa chỉ multicast, chúng ta có thể kiểm soát các gói tin multicast được đi bao xa, và các thông tin định tuyến
kết hợp với các nhóm multicast được quảng bá bao xa. Ví dụ: nếu chúng ta muốn quảng bá một multicast trong văn phòng của
ta, và muốn toàn thế giới thấy nó, ta sẽ gán tầm cho nó là E (110), tuy nhiên, nếu bạn muốn tạo một nhóm multicast cho một
hội nghị truyền hình bạn có thể gán tầm là 5 hay 2.
6. Địa chỉ Anycast:
IPv6 định nghĩa một loại địa chỉ mới: anycast. Một địa chỉ anycast là một địa chỉ IPv6 được gán cho một nhóm các máy có
chung chức năng, mục đích. Khi packet được gửi cho một địa chỉ anycast, việc định tuyến sẽ xác định thành viên nào của
nhóm sẽ nhận được packet qua việc xác định máy gần nguồn nhất. Việc sử dụng anycast có 2 ích lợi: một là, nếu bạn đang đến
một máy gần nhất trong một nhóm, bạn sẽ tiết kiệm được thời gian bằng cách giao tiếp với máy gần nhất; thứ hai là việc giao
tiếp với máy gần nhất giúp tiết kiệm được băng thông.
Địa chỉ anycast không có các tầm địa chỉ được định nghĩa riêng như multicast, mà nó giống như một địa chỉ unicast, chỉ có
khác là có thể có nhiều máy khác cũng được đánh số với cùng scope trong cùng một khu vực xác định.
Anycast được sử dụng trong các ứng dụng như DNS...

7. Header hợp lý:
Header của IPv6 đơn giản và hợp lý hơn IPv4. IPv6 chỉ có 6 trường và 2 địa chỉ, trong khi IPv4 chứa 10 trường và 2 địa chỉ.
IPv6 header có dạng:
IP V6 Header
IPv6 cung cấp các đơn giản hoá sau:
Định dạng được đơn giản hoá: IPv6 header có kích thước cố định 40 octet với ít trường hơn IPv4, nên giảm được overhead,
tăng độ linh hoạt.
Không có header checksum: trường checksum của IPv4 được bỏ đi vì các liên kết ngày nay nhanh hơn và có độ tin cậy cao
hơn vì vậy chỉ cần các host tính checksum còn router thì khỏi cần
Không có sự phân mảnh theo từng hop: trong IPv4, khi các packet quá lớn thì router có thể phân mảnh nó, tuy nhiên việc này
sẽ làm tăng thêm overhead cho packet. Trong IPv6 thì chỉ có host nguồn mới có thể phân mảnh một packet theo các giá trị
thích hợp dựa vào một MTU path mà nó tìm được, do đó, để hỗ trợ host thì IPv6 chứa một hàm giúp tìm ra MTU từ nguồn đến
đích.
8. Cấu trúc Header:
Có năm fields được remove từ IPv4 header:
Header Length
Identification
Flags
Fragment Offset
Header Checksum
Header Length được remove bởi vì trong IPv6 có 40 octecs. Còn trong IPv4 có 20 octecs + optional có thể lên đến 60 octecs.
Vì vậy fiels này là quan trọng trong IPv4 để xác định chiều dài của header. IPv6 tách ra làm hai phần: Header chính và header
mở rộng (Extension headers).
Identification, Flags, Fragment Offset là ba fields phục vụ cho việc phân mảnh các packet trong IPv4 header. Trong IPv4, có
thể các packet có kích thước lớn mà đi qua mạng chỉ cung cấp các packet có kích thước nhỏ, IPv4 router sẽ chia nhỏ các packet
này ra thành nhiều mảnh rồi chuyển nó đi thành nhiều đường trong mạng. Khi tới host đích, các packet sẽ được tập hợp lại và
ghép nối. Nếu một trong các mảnh bị mất hoặc lỗi, quá trình truyền sẽ không thành công. Việc này rất không hiệu quả. Trong
IPv6, không tồn tại cơ chế phân mảnh này nữa mà các host nguồn có cơ chế Path MTU Discovery.
Header checksum được remove để tăng tốc độ xử lý. Router không cần kiểm tra và cập nhật checksum. Độ tin cậy của mạng
ngày nay đã cao hơn nên có thể tin cậy hơn nhiều .

Tye of Service field được thay thế bởi Traffic Class field.
- Version (4bits).
- Traffic Class (1 bytes): thay thế field Type of Service field, để xác định và phân biệt các lớp packet với các độ ưu tiên khác
nhau. Yêu cầu chung của Traffic Class field được thể hiện trong RFC 2460, đại khái như sau:
o Mặc định: giá trị 0. Khi packet khởi đầu trong một node bởi upper layer protocol nào đó, upper layer protocol đó sẽ xác định
giá trị của Traffic Class field luôn.
o Node

×