Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (304 KB, 21 trang )
<span class='text_page_counter'>(1)</span>Chương 3. NGUYÊN HÀM- TÍCH PHÂN VÀ ỨNG DỤNG 1. CÔNG THỨC THƯỜNG DÙNG . 0dx C. . dx x C. . x dx . x 1 C 1. 1. dx. . x dx x. . e dx e. x. . x. 1. x a dx . ax C lna. 0 a 1. . sin xdx cosx C. . cosxdx sin x C. . cos x dx cos x tan x C. . sin. ln x C. C. 1. dx. 2. 2. 1. . 2. dx dx 2 cot x C x sin x. 1 dx eax b C a. ax b. . 1. cos ax b dx a sin ax b C a 0 . e. a 0. 1. dx. 1. ax bdx ax b a ln ax b C. 1. sin ax b dx a cos ax b C a 0 2. LUYỆN TẬP Bài 1. Tìm nguyên hàm của các hàm số sau 1. 2.. f x x3 4x . . 3 x. 5.. f x x 3x 4x. . 6.. 2x4 2 f x x2 3.. . . f x 4.. 1 2 x. . 7. 3 3. x. . 5 5. x. 8. 9.. . f x . x 1 x2. f x 2sin2. . x 2. f x tan2 x. . f x cos2 x. . . f x . 1 sin2 x cos2 x.
<span class='text_page_counter'>(2)</span> 10. 11. 12.. e x f x e 2 cos2 x 13.. . f x sin4 x cos3 x. . . f x 2sin3x cos2x. . x. . 14.. . x. f x e e 1. x. . f x e3x 1. Bài 2. Tìm nguyên hàm F(x) của các hàm số f(x) sau thỏa mãn điều kiện tương ứng 1. 2.. f x x3 4x 5. . . f x 3 5cosx. . F 1 3. 6.. . F 2. 3 5x2 f x x 3.. . . . . . 5.. 1 x. . f x . x3 3x2 3x 7. . F 1 2. . Bài 3. Chứng minh rằng F(x) là một nguyên hàm của f(x). . . F x 5x3 4x2 7x 120;. . . . f x 15x2 8x 7. . F x ln x x2 3 ; f x . 2. 3. 4.. . . 5.. . x2 3. . . . F x tan4 x 3x 5; f x 4tan5 x 4tan3 x 3. x2 4 2x F x ln 2 ; f x 2 x 4 x2 3 x 3. . x2 x 2 1 F x ln ; 2 x x 2 1 6.. . Bài 4. Tính các nguyên hàm sau 1.. 1. F x 4x 5 ex ; f x 4x 1 ex. . 5x 1. 11. xdx. x 1. f x sin2 9.. 1.. . 8.. x2 1 3 f x F 1 x 2 4. f x x x . F ' 0 3. 3x4 2x3 5 f x F 1 2 x2 7.. F e 1. . . f x sin2x cosx. . . f x . . . . . 2 2 x2 1 x4 1. x 2. 2. . F 0 8. F 2 4.
<span class='text_page_counter'>(3)</span> 2.. 2. dx. 3 2x. sin 10. . 5. sin x. dx 11. cos x 5. 5 2xdx. 3.. . 4.. 2x. 5.. x. 2. 3. . tan xdx. 7. 1 xdx. . 4. 5 x dx. 2. exdx. 13.. 3x. dx. 5 2x3 dx. . . x 1 x. 9.. 3. dx. ex. 15.. . x. x2 1. x2 1xdx. . e. xe 14. . 2. 8.. 12. cos x. 2. x dx 2 6. x 5 7.. x cosxdx. . 2. x dx. ln3 x x dx 16.. 17. e. dx 1. x. etan x 2 dx 18. cos x. Bài 5. Tính các nguyên hàm sau. . 1 x 2. 1.. 3. dx. 2.. x2dx. dx. 1 x 2. 3. 7.. 1 x. 2. dx 2 8. x x 1 3. 9.. x. x2 1dx. 2. 3.. 4.. 1 x dx dx. . 2. 4 x 2. 5.. x2 x2 1dx 10. . x. 11.. . 2. 1 x dx. dx 2 6. 1 x. 12.. . x2 x2 4 1 x2 3. dx. dx.
<span class='text_page_counter'>(4)</span> Bài 6. Tính các nguyên hàm sau 1.. x ln 1 xdx. 2.. x. 3.. x sin2xdx. . 2. 2x 1 exdx. 4.. 1 x cosxdx. 5.. e. 6.. x. 12.. x xe dx. x. sin2xdx. 2. cosxdx. Bài 9. Tính các nguyên hàm sau x. 2. 1.. xe dx. 2.. x cosxdx. 3.. lnxdx. 4.. ln x . 5.. x. 6.. x sin xdx. 7.. x sin 2x 1 dx. x cos xdx 18. . 8.. 1 x cosxdx. sin xdx 19. . 9.. 1 2x e dx. cos xdx 20. . 2. e x 13. x. x 1 cosxdx. . 1 x dx. . 3x 1 exdx. . x. dx 2. ex cosxdx 15. x. e 16. . sin xdx. x2 cosxdx 17. . x. x ln 11. . 1 dx. 14. . . xe 10. . . 2. 2. x sin xdx 21. xdx. Bài 10. Tính các nguyên hàm sau 1.. e. x. dx. lnxdx. 2.. 3. 4.. . . x. sin. x2 dx. 6.. x ln xdx. 7.. x. 8.. lnx. 2. lnx. lnxdx x 3. x. 5.. xdx. 5. dx 2. dx.
<span class='text_page_counter'>(5)</span> 2. 9.. x. sin xdx. . . ex sin 2x 1 dx 10. . . . x dx 2 sin x 15. esin x cosxdx 16. . cosx ln sin x dx 11. . 1 x x ln 1 x dx 12.. 13.. x cosx. 1 sin x. 2. dx. x sin x dx 2 cos x 14.. 17.. x2exdx. x 2. 2. 1 tan x tan x e dx 18. 2. x. 2. lnx x dx 19. x3. 20.. 1 x. 2. dx. Bài 19. Tính các nguyên hàm sau 4. xdx. 4. xdx. 4. xdx. 1.. tanxdx. sin 12. . 2.. cot xdx. cot 13. . 3.. cos xdx. 4.. sin. 2. 5.. tan. xdx. sin6 xdx 16. . 2. 6.. cot. xdx. sin x sin 3xdx 17. . 3. 7.. sin. xdx. cos7x cos3xdx 18. . 8.. cos xdx. 9.. tan. 2. 2. tan 14. . 6. xdx. cos xdx 15. . 3. sin5x cosxdx 19. . 3. xdx. sin x sin2x cos5xdx 20. . 3. xdx. cosx cos2x cos3xdx 21. . cot 10. . 4. cos xdx 11. . cos5x cos4x sin 3xdx 22. . Bài 20. Tính các nguyên hàm sau 3. 1.. sin x cos xdx. 3. 2.. sin. x cosxdx.
<span class='text_page_counter'>(6)</span> 3. x cos4 xdx. 4. x cos4 xdx. 3.. sin. 4.. sin. dx 20. cosx sin x cos3 xdx 1 cos2 x 21.. sin3 x 4 dx 5. cos x. 22.. sin3 x 2 dx 6. cos x. . . cosxdx. 23. 6 5sin x sin. 2. 5. 7.. 3. 2 sin2x 1 sin x dx. sin xdx. x. cos3x. dx 24. sin x. 5. 8.. cos xdx. 9.. sin x cosx 1 cosx dx. . . x. . 2. 25.. 1 tan x tan 2 sin xdx. 3. cos xdx. sin3x sin3 3x 1 cos3x dx 26.. 10. 1 sin x. 4sin3 xdx 11. 1 cosx. cos2xdx. 27. 1 cosx. sin2x dx 2 4 cos x 12. sin2x cosx. 13. 1 cosx cosx. e 14. 15.. cos2x dx 2 x cos2 x. 28. sin. dx. dx. 29. sin. 3. sin2xdx. . dx. . sin x tan x e cosx dx. e. 16. . sin x. . x. cosx cosxdx. 30. sin. 4. x. dx 3 3 31. sin x cos x dx x cos4 x. 1 2sin2 x dx 1 sin2 x 17.. 32. sin. sin2xdx 2 18. 4 cos x. 33. cosx sin. dx 19. sin x. 34. 1 cosx. 4. dx. 3. dx. x.
<span class='text_page_counter'>(7)</span> dx 35. 1 sin x. sin x cosx dx 4 4 sin x cos x 37.. 1 cosx. sin2xdx. dx 36. 1 cosx. 38. 4 cos 2x 2. Bài 1. Tính các tích phân sau 2. x. 1.. 3. . 2x 1 dx. 1. 2. . 2. 2.. 3 3x1 e dx x . . 1. 2. e. x. 1. . 1 2. 6.. 1. . . 7.. x2 dx . x 1 x . 1. 2. x dx 2 x 2 4. 1. dx. x x x 2. 1. 2. 2. 2. x 1 dx 2. x. 3.. . x4 4. . 5.. x. . 1. 2. x. 2. 8.. . x x 3 x dx. 1 4. . 9.. . x 23 x 44 x dx. 1. Bài 2. Tính các tích phân sau. 1.. 2. 4. x 1dx. x. 5. 2.. 6.. 1. . x2 x 2. 2. 2. x. 2. 3.. 3x2dx. 1 x 3. x 2 x 3. 3. 2x 1. x x 1 dx 1. 2 2. 0. 0. 8.. xdx. 1 x 2. 5.. . dx. 2. x x x dx. 1. 2. 4.. 3. 7.. 3. Bài 3. Tính các tích phân sau. 9.. x2 9dx. 0. 4. dx. x 1. . x 1 dx. dx 5 x3.
<span class='text_page_counter'>(8)</span> . sin 2 x dx 6 0 1.. 2. 7.. 2. 2.. 2sin x 3cosx x dx 3. 3.. 0. 4. 8.. 4.. 0. 9.. 10.. 2 3tan xdx. 6.. 2cot . 2. x cos2 xdx. 0. . tan x cot x. . 11.. x 5 dx. sin x 4 dx sin x 2 4 4. 6. 12.. 4. cos xdx 0. Bài 4. Tính các tích phân sau 1. ex e x dx x x e e 0 1. 2. 2.. 1. ex dx x 2 0 6.. x 1 dx. x. 2. 1. x ln x. 2. 7.. 1. e2x 4 dx x e 2 3. 0 ln2. 4.. e dx x 1. 2. 9. x. e x e 1 dx x 1 5.. ex. x dx 1. 1. e. 10.. sin xdx. 0. e. e 0. 8.. cosx. e 4. x. 2. 6. 2. 4. 4. 2. sin 3. 3. 5.. 1 cosx dx 1 cosx 0. 2. tan xdx cos2 x. . 0. 2. 6. sin3x cos2x dx. dx. 1 sin x. 1 ln x dx x. ln x. x 1. dx. dx.
<span class='text_page_counter'>(9)</span> 1. 11.. xe dx 0. 14.. 1. 12.. 4. x2. dx. 1 2sin2 x dx 1 sin2 x 0 2. 1 e. x. 0. 15.. 3. dx x 13. 1 e 1. e. sin x. . cosx cosxdx. 0. Bài 5. Tính các tích phân sau 1. 1.. x 1 x. 1 x . 0. 1. 2. 11.. 3. 12.. x dx 2 1. 13.. xdx. . 5.. 1 x2dx. 1. 6.. x. 2. 1 x dx. 0. 2 3. 7.. x 5. 3. 8.. 0. 15.. dx. 17.. exdx x 9. 0 1 e. 0. 10.. 18.. cosx sin x cosx dx 2 sin x 0. . . ex 1. 3. 19.. sin2xdx. 1 cos x 2. 0. 4. exdx. . 0. 2. ln2. . sin2xdx 2 x cos2 x. 2sin. 2. 3. 1 x2. ln 3. cos2 x 4sin2 x. 4. x2 4. x 2x. . 0. sin2xdx. sin3 x dx 2 cos x 16. 0. dx. 5. . 6. 0. 3. 1. 1 3ln x ln x dx x. cosx sin3 x dx 2 1 sin x 0 14.. 1. x. . 2 ln x dx 2x. 2. 2x 1. 0. 1. 2. x 0. e. 5. 1. 4.. dx. x3dx. . 3.. e. 0. 1. 2.. 19. 0. 2. tan x 1 dx cos2 x.
<span class='text_page_counter'>(10)</span> 2. 20.. 3cot x 1 dx sin2 x. 4. 4. 21.. cos2xdx. sin x cosx 2 0. Bài 6. Tính các tích phân sau 1. 1 2. 1.. dx. 1 x. 0. 2. 0 1. 2.. 12.. x2dx. 2. 2. 3.. 4 x2dx. 3. 14.. dx 2 4. 0 x 3. 15.. dx 2 5. 0 x 9. 6.. 0. . 1. 7.. x 0. 1. 8.. 0. 9.. . . 1 x2 2. xdx x2 1 dx. 2 x . 1. 0. 4. 2. 2. 16.. 17.. 11.. 1. x. 2. 2x x2dx. 0. 0. 1 x dx 1 x. 0. dx x3 x 1. 1. 18.. 3. dx. x 1 0. . . dx. 2. x 1 dx x3. Bài 7. Tính các tích phân sau. 0. 20.. 0. 2x 1 3 2x 1 dx x 1 x. 2 3. 21.. x 5. 1 x2 dx. 1. 2 10. 1 x 2x 2 2. 1 x2. 1. 19.. 1 x . . 0. x2dx. 4. dx. 0. . 2 2. dx. 2. x2 1. 2. 2. 1. x. 5. dx. x 2 2. 1. 1. 2. 3. 13.. x. 1 x . 2. 4 x2. 0. dx. dx x2 4.
<span class='text_page_counter'>(11)</span> 1.. 2.. 2. 2. lnxdx. x. 15.. 1. e. ln 1 x dx. x. 2. 16.. 0. . . ln. 17.. 2. ln x. 18.. 1. e. . 19.. 2. 0. 20.. 1. 21.. 2x 1 ln xdx. 1. 9.. . 1 dx. 0. x ln x. 2. 10.. . x 1 dx. 0. 1 ln x. ln2 x dx x 1. 2. 13.. 25.. 14.. x 2. x. 3. . 5 dx. . ln 1 x 2. x. dx. dx. 2. ln2 xdx. 1. ln2 x dx x 1. 1 e. . ln x. . x 1. 26.. x ln 0. 1. 1. 0. 2. 0. 2. . ln x 1. . lnx dx 2 x 12. 1. x ln x. dx. 1. e. 2. 3. 2. e. 24.. e. 11.. dx. e. 23.. 1. 2. 1. 22.. x ln x. dx. 3 ln xdx x. x ln x. 1. 1. 2. . 2. e. x 2 ln xdx. 1. x 1. 2x . 2. 8.. 3 ln x. e. 2x 7 ln x 1 dx 2. 7.. 0. . x dx. 2. ln 1 x dx 3. x 1 dx x 1 2. 6.. ln xdx. 1. 2. 0. 3. 5.. dx. 1. ln 2x 1 dx 3. 4.. 3. 1. 1. 1. 3.. lnx. 2. 27.. x 0. 2. dx. 1 x2 dx 1 x2. 1 ln 1 dx x .
<span class='text_page_counter'>(12)</span> 1. 28.. 1 x. 2. x. 2. . 1 ln x. . 41.. 42.. . . 1. 44.. x lg xdx. 1. cos ln x dx 1. 2. 1. 10. 45.. 2 x logxdx 1. . sin x ln 1 cosx dx 2. 4. 2. lnx dx 5 x 1 34. e. 35.. cos ln x dx e. 2. 2. 33.. 0. 2. x log xdx 10. 32.. cosx ln 1 cosx dx. e2. 43.. 2. 31.. 1. . 2 ln x 1 x dx 1. sin ln x dx 2. dx. x. 1. 2. 30.. e. dx. 0. e. 29.. . ln 1 x. 46.. ln 1 tanx dx 0. 4. 3. x 1 ln xdx x 1. . 47.. cosx ln tan x dx 6. 1. 1 x x ln dx 1 x 0 36. 1. 37.. 2. 38.. 39.. dx. 2. x ln x x 1. 0. . 3. x2 1. 48.. 0. x. 49.. x ln 1 x dx. 6. 1. 2. 4. . . . cos2x ln cosx dx. 50.. 2. cos x. . ln cosx. . sin2 x. dx dx. . cosx ln sin x 2. sin x. 6. 0. 3. 2. 40.. 4. . ln cosx. cosx ln sin x dx 6. 51.. 4. . ln tan x 2. cos x. dx. dx.
<span class='text_page_counter'>(13)</span> Bài 8. Tính các tích phân sau ln2. 2 x. 1.. xe dx 1. 2.. 12.. 0. . x e 1 dx 0. 13.. 2x. xe. dx. 0. 14.. 1. x 2 e. 2x. 4.. 0. 15.. x e dx 0. 16.. x. 2. . 2x exdx. 0. x. 2. 8.. 0. 0. 2. x3e x 1 x2 1 2x. 1. 18.. 3 x2. x e dx. . 3 x 1 dx. 1 x. 2. x 1. 2. x 3 e. 2x. 19.. dx. 0. 2x. e dx. 0. xe. 0. xexdx. 1. 0. 2. x2 1 dx 3x e 20. 0. x. dx. 0. 1. 11.. 0. x e. . 1. 10.. x2 dx. 0. 2x 1 e xdx. 1. 9.. 2. 17. 1. 1. 1. 1 x x1 1 x e dx x 1. 3. 1. 7.. 0. x. 2 x. 6.. 2. 3 x x e dx. 1. dx. 1. 5.. dx. 0. 2. ln2. 3.. xe. x 2. 1. . x. . 3. 1. x2 2 dx x e 21. 0. 5 x x e dx 0. Bài 9. Tính các tích phân sau 2. 1.. x 0. 2. . 2. 1 sin xdx 2.. 2. 2x 1 cos xdx 0.
<span class='text_page_counter'>(14)</span> 1. 2. cos 3.. 4. 3. 2. 3. xdx. 16.. 0. cos. xdx. 0. 17.. x sin2xdx 0. 18.. 2. x cos xdx 0. 19.. 2. x. 2. sin xdx 20.. 0. 2. 9.. 10.. x 1 sin2xdx 0. 21.. 2. 0. xdx 2 x. sin 4. x sin x. cos x 2. dx. 0. x 2cos x 1 dx 2. 0. 0. 1 cos2x. x 1 sin xdx. 22.. 0. . 0. 2. 23.. x. sin2 xdx. 0. 3. x sin xdx. 0. x sin x. cos x dx 2. 24.. . 3. 2. x sin x cosxdx 2. 0. 25.. x sin x dx 1 cos x 3. 2. x cos2xdx 0. xdx. 1. 2x 1 cosxdx. 2. 14.. xdx. cos x. 4. 2. 13.. 4. 2. 2. 12.. xdx. 4. 2. 11.. 2. x tan . 1. . 8.. 0. 3. 2. 7.. x cos xdx. . 3. 4. 6.. cosxdx. 0. 3. 2 4. 5.. x 2 4. sin. 4.. 15.. 2. 1. 2. 1 xdx. 2. 26.. x 0. sin2 xdx.
<span class='text_page_counter'>(15)</span> Bài 11. Tính các tích phân sau 1. 1.. . 1. x2 1dx 3.. 0. 1 2. 2.. x. 0. 4.. 1. sin. 4. 5.. 4. 3dx. 0. . 2. x2 4dx. 1. cos x dx 0. 6.. dx. 4. 4. 4. x. 1. cos x dx 6. 0. Bài 12. Tính các tích phân sau 2. 1.. 2.. 2. x 1 dx 0. 7.. 2. 8.. 2x 1 dx 0. x. 2. x. 1 dx. 3. 4. 12.. x 3 . . x 4 dx. 4. 2. 2. 5.. x. 10.. x. . x 2 dx. 3. 0. 2. 6.. x 2 . x dx. 2. 6x 9dx. 3. 2x xdx. 1. x 0. 14. 5. 2. 2. 2. x 4. 13.. 3. 4.. 2 x dx. 2. 11. 1. 0. 9.. 2 x 3x dx. x. 4x 3 dx. 6. 3. 3.. 1 2. x 2 4 dx. 3. x. 3. 4x2 4xdx. 0. 1. 0. . 4 xdx. 15. 1. 2x 3 dx. 0. Bài 13. Tính các tích phân sau. 1.. . sinx dx. cos2x dx. 2.. 1 cos2xdx 0. 8.. 2. 5.. . 6.. 1 cos2xdx 9.. 0. cosx sin xdx. . 1 sin2xdx. 7.. 1 sinxdx. . 1 cosxdx. 0. 10.. 2. 0. . 2. . 4. . 3.. 4.. 2. 3 4. . . 2. 0. 1 sinxdx. 3. 6. tan2 x cot2 x 2dx.
<span class='text_page_counter'>(16)</span> 11.. 12.. 2. . cosx. cosx cos3 xdx. 2. 3. 6. dx 1 cot2 x 1 2 cos x. Bài 14. Tính các tích phân sau 2. 1.. 1 dx x x 1 1. . 2 3. 2.. . 3. 6.. 3. 7.. 1. dx 2 3. 0 x 5x 6 x3dx 2 4. 0 x 2x 1. 5.. 0. . 4. 9.. xdx. 1 2x. dx 2 1 x 1 x. 12.. . dx. x x 1. 10.. 0. 2x3 6x2 9x 9 dx 2 x 3 x 2 1 3. 3x2 3x 3 dx 3 x 3 x 2 13. 2 1. x. 2. 1. 3. x3 x 1 dx x 1 0. 11.. x3dx 2 8. 0 x 3x 2. 3. . 9. 1 2. 1. 1. 1 x. 4. dx. x x. 2. 1. x2dx. x. 4x 11 dx 5x 6. 2. 0. 2. 14.. 0. 2x 7 dx 7x 14. 15. 1. x. 2. 0. 4x 8 dx 4x 2014.
<span class='text_page_counter'>(17)</span> ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH, THỂ TÍCH.
<span class='text_page_counter'>(18)</span>
<span class='text_page_counter'>(19)</span>
<span class='text_page_counter'>(20)</span>
<span class='text_page_counter'>(21)</span>
<span class='text_page_counter'>(22)</span>