Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 3 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
!4x
!2−x
2
3
Câu 1. Tập các số x thỏa mãn
≤
là
3
2
#
"
!
2
2
B. − ; +∞ .
A. −∞; .
5
3
"
!
2
C.
; +∞ .
5
Câu 2. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.
√3
4
Câu 3. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
B. a 8 .
C. a 3 .
A. a 3 .
#
2
D. −∞; .
3
D. 13.
5
D. a 3 .
Câu 4. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 5. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Năm cạnh.
D. Hai cạnh.
Câu 6. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. [6, 5; +∞).
D. (4; 6, 5].
Câu 7. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n
Câu 8. [1-c] Giá trị của biểu thức
A. 4.
log7 16
log7 15 − log7
B. −2.
C.
15
30
Câu 9. [3] Biết rằng giá trị lớn nhất của hàm số y =
sin n
.
n
D.
n+1
.
n
bằng
C. 2.
D. −4.
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 24.
D. S = 135.
Câu 10. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 11. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 3 mặt.
C. 6 mặt.
D. 4 mặt.
1
a
Câu 12. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.
C. 2.
D. 4.
Câu 13. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.
C. 4.
D. 3.
√
x2 + 3x + 5
Câu 14. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. .
C. 1.
D. − .
4
4
Câu 15. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Trang 1/3 Mã đề 1
Câu 16. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; 1).
D. (−∞; −1).
4x + 1
bằng?
Câu 17. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
C. 2.
D. 4.
un
Câu 18. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
16
48
48
24
Câu 20.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
Z
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 21. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 22. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
Câu 23. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .
C. −2e2 .
D. 2e2 .
d = 300 .
Câu 24. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√
√ khối lăng trụ đã cho.
3
3
√
a
3a
3
3
.
C. V = 3a3 3.
D. V =
.
A. V = 6a3 .
B. V =
2
2
Câu 25. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
.
B. a 2.
.
A.
C. 2a 2.
D.
4
2
Câu 26. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 27. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 28.
! định nào sau đây là sai?
Z Các khẳng
0
f (x)dx = f (x).
A.
Z
C.
f (x)dx = F(x) + C ⇒
Z
B.
Z
f (t)dt = F(t) + C. D.
Z
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Trang 2/3 Mã đề 1
Câu 29. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 3.
D. 0.
Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 31. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 32. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
C. 1.
D. 3.
Câu 33. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 34. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.
D. Bốn mặt.
Câu 35. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 36. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.
C. 8.
D. 12.
2
x − 5x + 6
Câu 37. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 1.
D. 5.
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 38. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
Câu 39. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 12.
D. 10.
√
Câu 40. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 3/3 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3. A
5.
B
D
7.
9.
B
D
11.
4.
D
6.
D
8.
D
10.
D
12. A
13.
C
14.
15.
C
16. A
17.
D
19.
23.
20.
D
B
25.
D
27.
D
39.
B
24.
B
26.
B
D
B
32. A
34. A
B
35.
37.
22.
30.
31. A
33.
D
28.
C
29.
D
18. A
C
21.
B
C
36.
B
B
38. A
C
40.
1
C