Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 3 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.
√
√
√
9 11 + 19
2 11 − 3
18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 2. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 7.
C. 2.
D. 1.
Câu 1. [12210d] Xét các số thực dương x, y thỏa mãn log3
Câu 3. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
Câu 4. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.
√
2
Câu 5. Xác
√ định phần ảo của số√phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
Câu 6. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Bốn mặt.
C. Ba mặt.
x+2
bằng?
Câu 7. Tính lim
x→2
x
A. 0.
B. 2.
C. 3.
2
x − 3x + 3
Câu 8. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
C. x = 3.
D. Thập nhị diện đều.
D. 9.
D. −7.
D. Hai mặt.
D. 1.
D. x = 0.
Câu 9. Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
√
3
3
3
3
A. .
B.
.
C.
.
D.
.
4
4
12
2
1
Câu 10. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. 3.
D. −3.
3
3
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 3
a3 5
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 12. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
D. V = S h.
3
2
1
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
√
Câu 14. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
36
18
6
6
Trang 1/3 Mã đề 1
Câu 15. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
7n2 − 2n3 + 1
Câu 16. Tính lim 3
3n + 2n2 + 1
7
A. .
B. 0.
3
Câu 17. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
C. y0 =
1
.
ln 2
D. y0 =
C. 1.
2
D. - .
3
C. 20.
D. 12.
1
2 x . ln
x
.
Câu 18. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
!4x
!2−x
2
3
Câu 19. Tập các số x thỏa mãn
≤
là
"
!
" 3 ! 2
#
#
2
2
2
2
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
D. −∞; .
3
5
3
5
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 20. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B. 2a 2.
C.
.
D.
.
A.
24
12
24
Câu 21. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 22. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
B.
.
C. 68.
D. 34.
A. 5.
17
Câu 23. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 24. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
log 2x
Câu 25. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
2x ln 10
x
x ln 10
Câu 26. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 4.
D. y0 =
1 − 4 ln 2x
.
2x3 ln 10
D. 3.
Câu 27. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
0 0 0 0
0
Câu 28.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Trang 2/3 Mã đề 1
Câu 29. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; −8).
2n + 1
Câu 30. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 3.
D. 2.
Câu 31. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. [3; 4).
B.
;3 .
C. (1; 2).
D. 2; .
2
2
x−3
Câu 32. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. 1.
√
ab.
D. +∞.
Câu 33. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 34. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±1.
C. m = ±3.
D. m = ± 3.
A. m = ± 2.
Câu 35. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 36. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 30.
D. 8.
Câu 37. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 38. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
√
Câu 39. Thể tích của khối lập phương
√ có cạnh bằng a 2
3
√
√
2a
2
A. 2a3 2.
B.
.
C. V = 2a3 .
D. V = a3 2.
3
log(mx)
Câu 40. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 3/3 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
D
3.
2.
B
4.
B
5.
B
6.
7.
B
8. A
9.
B
10. A
11.
D
12. A
13. A
14.
15. A
16.
C
17.
20.
21. A
22.
D
25.
B
D
18. A
19. A
23.
C
C
D
B
24.
C
26.
C
27. A
28.
D
29. A
30.
D
31.
B
32.
33.
35.
D
B
34. A
C
36. A
37. A
38.
39. A
40.
1
D
B