Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn toán thpt 12 c1 (241)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (110.18 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 2. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
Câu 3. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 4. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 12.

D. 30.


Câu 7. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
A. un = n2 − 4n.
B. un =
n+1

!n
−2
C. un =
.
3

!n
6
D. un =
.
5


Câu 5. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3 3
a3
a 3
A.
.

B.
.
C.
.
D. a3 3.
3
12
4
log 2x
Câu 6. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10


Câu 8. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
12 + 22 + · · · + n2
Câu 9. [3-1133d] Tính lim
n3
2
1
A. .
B. .
3
3
Câu 10.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
6
2
Câu 11.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
1

A.
.
B.
.
3
e

C. +∞.

D. 0.


a3 2
C.
.
12


a3 2
D.
.
4

!n
5
C.
.
3

!n

5
D. − .
3

Câu 12. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 13. Giá trị của lim (3x2 − 2x + 1)
x→1


A. 2.

B. 3.

C. +∞.

D. 1.

Câu 14. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Trang 1/3 Mã đề 1


Câu 15. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 8.

C. 10.

D. 12.

Câu 16. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 17. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 18. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
a 3
2a 3
.
B. a 3.
.
D.
.
A.
C.
2
2
3
Câu 19. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình chóp.
a
1

Câu 20. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 4.
D. 1.
Câu 21. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 22. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.

C. +∞.

D. 2.

Câu 23. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √


a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
12
4
4
Câu 24. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
log7 16
Câu 25. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30

A. 2.
B. −2.
C. −4.
D. 4.
x−3
bằng?
Câu 26. [1] Tính lim
x→3 x + 3
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 27. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 = .
C.
.
D. y0 =
.
x
x
10 ln x
x ln 10
Câu 28. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
Trang 2/3 Mã đề 1


1
D. k = .
6
tan x + m
Câu 29. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
A. k =

1
.
15

B. k =

1
.
18

1

C. k = .
9

Câu 30. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
8
24
48
24

Câu 31. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.

B. 62.
C. Vô số.
D. 64.
Câu 32. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 3.
C. .
e
Câu 33. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A
đến (S AB)
√ bằng


a 6
.
B. 2a 6.
C. a 3.
A.
2
2−n
Câu 34. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.
Câu 35. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = [2; 1].


x2 +x−2

Câu 36. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

D. 2e + 1.
= a. Khoảng cách từ điểm O

D. a 6.

D. 0.


C. D = R.

D. D = R \ {1; 2}.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 37. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 38. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.

B. Phần thực là −1, phần ảo là 4.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là 4, phần ảo là −1.
Câu 39. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
Câu 40. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.

D. {4; 3}.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 3/3 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

5. A


6. A

7.
9.

8.

C

12.

13. A

14. A

15.

D

16.

17.

D

18.

19.

C

B
B
D

20. A

C
B

22. A

23. A

24. A

25.

C

27.

26.
D

B

31.

32.


B

33.

34. A

35.

36. A

37. A

38.

C

29. A

30.

40.

B

10.

B

11. A


21.

D

4.

C

3.

B

D

39.

B

1

B
D
C
C



×