Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn toán thpt 12 c1 (570)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (106.11 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
log7 16
Câu 2. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. 4.
Câu 3. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

Câu 4. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
x−3
Câu 5. [1] Tính lim
bằng?


x→3 x + 3
A. +∞.
B. 1.
0

0

D. {3; 5}.

D. −2.

C. Khối tứ diện đều.

D. Khối bát diện đều.

C. 6.

D. 108.

C. 0.
0

Câu 6. [2] Cho hình hộp chữ nhật ABCD.A B C D
0
đến đường

√ thẳng BD bằng
b a2 + c2
a b2 + c2
.

B. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
Câu 7. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.
5
Câu 8. Tính lim
n+3
A. 1.
B. 3.

0

D. −∞.

có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0


abc b2 + c2
C. √
.
a2 + b2 + c2


c a2 + b2
D. √

.
a2 + b2 + c2

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

C. 2.

D. 0.

Câu 9. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.

D. m =
triệu.
3
(1, 12)3 − 1
un
Câu 10. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 11. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 12. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



a 3
a 3

2a 3
A.
.
B.
.
C. a 3.
D.
.
2
2
3
Trang 1/4 Mã đề 1


Câu 13. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 6, 12, 24.
D. 2, 4, 8.
A. 8, 16, 32.
B. 2 3, 4 3, 38.
Câu 14. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.

D. m = −1.

Câu 15. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3

chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 16. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
Câu 17. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
2−n
Câu 18. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.

D. 1 + 2 sin 2x.

C. (−∞; 2).

D. (0; 2).

C. 0.

D. 2.


Câu 19. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
x+1
bằng
Câu 21. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
2
Câu 22. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
x−2 x−1
x
x+1
Câu 23. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
Câu 25. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 6).
D. (2; 4; 3).
Câu 26. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
Trang 2/4 Mã đề 1


B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 27. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.

B. 8.

C. 20.

D. 30.

Câu 28. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
2a3 3
a3 3
4a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3

Câu 29. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 4.
D. 3.
Câu 30. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
!
1
1
1
+
+ ··· +
Câu 31. Tính lim
1.2 2.3
n(n + 1)
3
C. 0.
A. 2.
B. .
2
Câu 32. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.
Câu 33. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.

B. −7.
C. −5.
log 2x
Câu 34. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 4 ln 2x
0
0
.
B.
y
=
.
.
C.
y
=
A. y0 =
2x3 ln 10
x3
2x3 ln 10
Câu 35. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối 12 mặt đều.

D. 1.
D. m ≥ 0.

D. −3.

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

D. Khối tứ diện đều.

12 + 22 + · · · + n2
n3
1
2
A. +∞.
B. .
C. 0.
D. .
3
3
Câu 37. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Câu 36. [3-1133d] Tính lim

(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.


B. (II) và (III).

Câu 38. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .

C. (I) và (II).
C.


−1.

−3

D. (I) và (III).
D. (−1)−1 .
Trang 3/4 Mã đề 1


Câu 39. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 1.

B. f 0 (0) = ln 10.

C. f 0 (0) = 10.

D. f 0 (0) =


1
.
ln 10

Câu 40. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3. A

4. A

5.

C


6. A

7.

C

8.

9. A
11.

D

10. A
C

13.

D

12.

B

14. A

15. A

16. A


17. A

18. A

19.

D

20.

B

21.

C

22.

23.

C

24.

B

25.

C


26.

B

27.

C

28.

29.

C

30.

B

32.

B

31.

D
B

36.
C


37.
39.

C

34.

33. A
35.

D

D
B

38. A
40.

B

1

D



×