Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 22.
C. 23.
D. 21.
π
Câu 2. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 3 3 + 1.
C. T = 4.
D. T = 2.
A. T = 2 3.
1
Câu 3. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 4. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. [−1; 3].
D. (−∞; −3].
Câu 5. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
v! n
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 6. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| =
√
17.
Câu 7. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 8. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .
C.
√
−1.
−3
√
D. (− 2)0 .
Câu 9.√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
3
3
1
A.
.
B. .
C. 1.
D. .
2
2
2
x+2
Câu 10. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 11. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 12. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 8 3.
B. 7 3.
C. 16.
D. 8 2.
Trang 1/4 Mã đề 1
1
Câu 13. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = R.
D. D = (−∞; 1).
√
Câu 14. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a
a 38
3a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
1
Câu 15. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 1.
D. 2.
Câu 16. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
C. D = R \ {0}.
D. D = (0; +∞).
Câu 17. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
Câu 18. Phát biểu nào sau đây là sai?
1
A. lim qn = 0 (|q| > 1).
B. lim k = 0.
n
1
C. lim un = c (un = c là hằng số).
D. lim = 0.
n
Câu 19.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k
A.
Z
B.
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
x+2
Câu 20. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 3.
D. 2.
x2 − 5x + 6
Câu 21. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. 5.
D. −1.
Câu 22. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
1
Câu 23. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
2n + 1
Câu 24. Tính giới hạn lim
3n + 2
2
1
3
A. 0.
B. .
C. .
D. .
3
2
2
Câu 25. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Trang 2/4 Mã đề 1
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Z 1
Câu 26. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. 0.
D. .
4
2
Câu 27. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
A. 1.
B.
d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.
√
√
√
a3 3
3a3 3
3
3
C. V = 6a .
D. V =
.
B. V = 3a 3.
.
A. V =
2
2
x−3
Câu 29. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 30. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Ba mặt.
4
3
Câu 31. [1-c] Cho a là số thực dương .Giá trị của biểu thức a :
5
2
7
A. a 8 .
B. a 3 .
C. a 3 .
√3
D. Bốn mặt.
a2 bằng
5
D. a 3 .
Câu 32. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(4; 8).
D. A(−4; 8).
Câu 33. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
B. V = S h.
C. V = 3S h.
A. V = S h.
3
Câu 34. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
n2 − 2
.
B.
u
=
.
C. un =
.
A. un =
n
2
2
5n − 3n
n
5n + n2
1
D. V = S h.
2
D. un =
n2 + n + 1
.
(n + 1)2
Câu 35. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 36. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
12
4
12
6
q
2
Câu 38. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
2n + 1
Câu 39. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 3.
D. 0.
Trang 3/4 Mã đề 1
Câu 40. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (II).
D. (I) và (III).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3. A
C
4.
B
5.
B
6.
B
7.
B
8.
B
9.
C
10.
C
11.
C
12.
C
13.
B
14. A
15. A
16.
C
17.
18. A
20.
19. A
D
21.
B
24.
25.
B
26.
27. A
C
B
D
28. A
29.
D
B
33. A
35.
37.
D
22.
23.
31.
B
D
30.
C
32.
C
34.
C
36.
C
38.
C
39. A
40.
1
B
C