Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn toán thpt 12 c1 (100)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (108.83 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.
D. 1.
!
x+1
Câu 2. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C. 2017.
D.


.
2017
2018
2018
Câu 3. Xét hai khẳng đinh sau
Câu 1. [1-c] Giá trị biểu thức

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.

C. Chỉ có (I) đúng.

Câu 4. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 10.

D. Chỉ có (II) đúng.

D. 8.
Z 1
6
2
3
Câu 5. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
. Tính

f (x)dx.
0
3x + 1
A. −1.

B. 6.

C. 2.

D. 4.

B. −∞.

C. 3.

D. +∞.

3

x −1
Câu 6. Tính lim
x→1 x − 1
A. 0.

Câu 7. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. Không tồn tại.
Câu 8. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.

C. f (x) có giá trị lớn nhất trên K.

D. −3.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.

Câu 9. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
x
x+1
x−2 x−1
Câu 10. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).

D. (−3; +∞).
Câu 11. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 12. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 9.

C. 5.

D. 0.

Câu 13. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−1; 0).
Trang 1/4 Mã đề 1


0 0 0 0
0
Câu 14.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.

.
C.
.
D.
.
2
3
7
2
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 15. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = −2.
D. P = 16.
2n − 3
Câu 16. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.

C. +∞.
D. 0.

Câu 17. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 18.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
B. 2.
C. 1.
D. 10.
A. 2.
Câu 19. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 20. Hàm số nào sau đây khơng có cực trị
x−2
.
2x + 1
Câu 21. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.
A. y = x4 − 2x + 1.


B. y = x3 − 3x.

C. y =

1
D. y = x + .
x
D. Hình lập phương.

Câu 22. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Z 1
Câu 23. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
.
C. 1.
2
Câu 24. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. 9.
A. 0.


B.

D.

1
.
4

D. Không tồn tại.

Câu 25. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. (I) và (III).

C. (I) và (II).

Câu 26. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 8 mặt.

D. Cả ba mệnh đề.
D. 4 mặt.


Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là

3
3
a
2a 3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Trang 2/4 Mã đề 1


Câu 28. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.

u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 30. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
2
2
2
1 + 2 + ··· + n
Câu 31. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
D. +∞.
3

3
Câu 32. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
D. Hàm số đồng biến trên khoảng ; 1 .
C. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 33. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
2x + 1
Câu 34. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. −1.
D. 2.
2
Câu 35. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.

C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 36. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un =
.
B. un = n2 − 4n.
n+1

!n
−2
C. un =
.
3

Câu 37. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
B.
.
C. 1.
A. .
2
2
Câu 38. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un

B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

!n
6
D. un =
.
5
D. 2.

!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 39. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B. a 2.
C. 2a 2.

D.
.
2
4
Trang 3/4 Mã đề 1


Câu 40. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D


4.

5.

D

6.

7.
9. A

C
D

13.
15.

D
C
D

8.

C

11.

B

10.


B

12.

B

14.

B

16.

B

D

17.

D

18.

C

19.

D

20.


C

21.

B

22.

23.

B

24. A
C

25.
27.

26.
D

30.

38.

C

31. A


32. A

33.
D

36.

B

28.

C

34.

D

35.
37.

C
B

39. A

40. A

1

B

C
D



×