Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn toán thpt 12 c2 (303)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (105.9 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây
2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.
3
2
x
Câu 2. [2] Tìm
√ m để giá trị nhỏ nhất của hàm số y = 2x + (m √+ 1)2 trên [0; 1] bằng 2
A. m = ± 2.
B. m = ±3.
C. m = ± 3.
D. m = ±1.

Câu 3. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.


C. Khối lập phương.

D. Khối tứ diện đều.

Câu 4. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 13 năm.
!4x
!2−x
2
3


Câu 5. Tập các số x thỏa mãn
3
!
# 2
"
!
#
"
2
2
2
2

B. −∞; .
C.
; +∞ .
D. −∞; .
A. − ; +∞ .
3
3
5
5
Câu 6. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 7. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng



2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.

A.
2
2
3
3
2
Câu 8. Hàm số y = x − 3x + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (0; +∞).
Câu 9. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3
3
log7 16
Câu 10. [1-c] Giá trị của biểu thức
bằng

log7 15 − log7 15
30
A. −2.
B. 2.
C. −4.
D. 4.
Câu 11. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 1/4 Mã đề 1


Câu 12. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {3; 4}.
x−3

Câu 13. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.

D. {4; 3}.

D. 0.

0 0 0 0
0
Câu 14.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
2

3
7

Câu 15. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 16. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
.
D. 26.
A. 2 13.
B. 2.
C.
13
Câu 17. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
.
B. 2a 6.
C. a 6.
D.
A. a 3.
2
Câu 18. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. 3.

D. +∞.

Câu 19. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 34.
C. 68.

D. 5.
17
Câu 20. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 21. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 8%.
C. 0, 6%.
D. 0, 7%.
1
Câu 22. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
 π
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π3
A. 1.

B. e .
C.
e .
D.
e .
2
2
2
7n2 − 2n3 + 1
Câu 24. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. 1.
D. - .
3
3
2
x − 5x + 6
Câu 25. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
C. 0.
D. −1.
Trang 2/4 Mã đề 1



1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
n−1
Câu 27. Tính lim 2
n +2
A. 0.
B. 1.
C. 3.
D. 2.
Câu 26. [3-1132d] Cho dãy số (un ) với un =

Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 29. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 2
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
16
48
48
24
Câu 30. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 18.
C. 27.
D. 12.
2
x2 − 12x + 35

Câu 31. Tính lim
x→5
25 − 5x
2
2
A. .
B. +∞.
C. − .
D. −∞.
5
5
Câu 32. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).
D. (2; 2).
2

2

sin x
Câu 33. [3-c]
+ 2cos x lần
√ lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 2 2.


Câu 34. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.

D. {4; 3}.

Câu 35. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 36. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Tăng lên n lần.
D. Không thay đổi.
Câu 37. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
Câu 38. [1] Đạo hàm của làm số y = log x là
1
1
.
B.
.
A. y0 =
x ln 10
10 ln x
2n + 1
Câu 39. Tìm giới hạn lim
n+1
A. 2.

B. 3.

C. 2.
C. y0 =

D. 4.
ln 10
.
x

1
D. y0 = .
x

D. 1.
Z 1
6
2
3
Câu 40. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.

B. 4.

C. 0.


C. −1.

D. 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 3/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3.

D

4.

D
B

6. A

5. A

7.

C

8.

C

9.

C

10.

C

11.

C

12.

B

13.

D

14.


C

15.

D

16.

C

17.

C

19. A
21.

D

23.

C

25.

D

27. A
29.


C

31. A

37.

B

20.

B

22.

D

24.

D

26.

B

28.

B

30.


B

32. A

33.
35.

18.

D

34. A

B

36.
D

B

38. A

39. A

40.

1

B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×