Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt cao1 (471)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (159.33 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
2
3
7n − 2n + 1
Câu 2. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 0.
C. .
D. 1.
3
3
2x + 1
Câu 3. Tính giới hạn lim


x→+∞ x + 1
1
D. −1.
A. 1.
B. 2.
C. .
2
Câu 4. Dãy số! nào có giới hạn bằng 0?
!n
n
−2
6
n3 − 3n
2
A. un =
.
B. un = n − 4n.
C. un =
.
D. un =
.
3
n+1
5
Câu 5. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai quyển
sách cùng một mơn nằm cạnh nhau là
1
1
9
2

A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 6. √
Thể tích của tứ diện đều cạnh
√ bằng a


3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6

4
12
2
log 2x
Câu 7. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
.
C. y0 = 3
.
D. y0 =
.
.
B. y0 = 3
A. y0 =
3
x
2x ln 10
x ln 10
2x3 ln 10
Câu 8. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
A.
.
B. 2.
C. 26.
D. 2 13.
13
Câu 9. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
A. 8 3.
B. 16.
C. 7 3.
D. 8 2.
Câu 10. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 11. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lăng trụ.
D. Hình lập phương.
mx − 4

Câu 12. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
a
1
Câu 13. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 1.
C. 4.
D. 2.
Trang 1/10 Mã đề 1


Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a 3
a 2

a 3
B.
.
C.
.
D.
.
A. a3 3.
4
2
2
Câu 15. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và

√ (A C D) bằng


a 3
2a 3
a 3
C.
A.
.
B. a 3.
.
D.
.
2
2

3
Câu 16. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.
D. −3.
Câu 17. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 18. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

Câu 19. Biểu thức nào sau đây √
khơng có nghĩa
−3
−1
A. 0 .
B.
−1.


C. 0.

C. (− 2)0 .

D. 2.
D. (−1)−1 .

Câu 20. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. aαβ = (aα )β .
B. β = a β .
a
Câu 21. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
Câu 22. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



2a3 3
a3 3
4a3 3

5a3 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 23. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số cạnh của khối chóp bằng 2n.
Câu 24. [1] Tính lim
x→3

A. 0.

x−3
bằng?
x+3
B. +∞.

C. −∞.


Câu 25. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. 1.
D. Nhị thập diện đều.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 26. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 2
a3 3
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
24
24
12
Trang 2/10 Mã đề 1



Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 28. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. 7.
B.
.
C. .
D. 5.
2

2
Câu 29. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 9 cạnh.
Câu 30. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 31. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.

D. 12.

Câu 32. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
Câu 33. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a

= .
A. lim [ f (x) + g(x)] = a + b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞



x = 1 + 3t




Câu 34. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
3t
x
=
1
+
7t
x = −1 + 2t

















A. 
C. 
.
D. 
y = −10 + 11t .
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t

















z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
z = 6 − 5t
Câu 35. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
 π
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A. 1.
B.
e .

C. e .
D.
e .
2
2
2
log(mx)
Câu 37. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
Câu 38. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 68.
D. 34.
17
Trang 3/10 Mã đề 1



1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 40. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .

Câu 39. [12210d] Xét các số thực dương x, y thỏa mãn log3


Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Bốn mặt.

D. Hai mặt.

Câu 42. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 43. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

n+1

.
n

D.

sin n
.
n

Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
4a3 3
2a3 3
a3
a3
.
B.
.
C.
.
D.
.
A.
3
3
3
6

Câu 45. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
a 6
a3 6
a3 2
a3 6
.
B.
.
C.
.
D.
.
A.
36
6
18
6
Câu 46. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. −2.
D. − .
2
2

2
Câu 47. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 48. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

D. 12.
Z 1
6
2
3
Câu 49. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

C. 8.

B. 6.

C. −1.
D. 2.
1 + 2 + ··· + n
Câu 50. [3-1132d] Cho dãy số (un ) với un =

. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 51. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Câu 52. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

C. 8.

D. 12.
Trang 4/10 Mã đề 1


Câu 53. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
Câu 54. Dãy số nào sau đây có giới hạn là 0?

n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.
n
(n + 1)2
n2

C. un =

1 − 2n
.
5n + n2

D. un =

n2 − 2
.
5n − 3n2


Câu 55. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.


Câu 56. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 57. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 58. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.


D. Cả hai đều đúng.

Câu 59. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 18.
D. 12.
2
x2 − 5x + 6
Câu 60. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 61. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 2e + 1.
D. 3.
e
Câu 62. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3

3
A. 1.
B. .
C. .
D.
.
2
2
2
Câu 63. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.



x=t




Câu 64. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t

lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
Trang 5/10 Mã đề 1


9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 65. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 66. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.


A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
Câu 67. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 5.
D. 25.
5
Câu 68. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
!
1
1
1
+
+ ··· +
Câu 69. Tính lim
1.2 2.3
n(n + 1)
3

D. 1.
A. 0.
B. 2.
C. .
2
Câu 70. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 3.
D. 0, 2.


0 0 0 0
0
Câu 71.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.

7
3
2
2
Câu 72. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
un
Câu 73. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.

Câu 74.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

Z

!0

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.

f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 75. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
2n + 1
Câu 76. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.
x−3 x−2 x−1
x
Câu 77. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1

x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Trang 6/10 Mã đề 1


Câu 78. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

C. 1.

D. 4.
tan x + m
nghịch biến trên khoảng
Câu 79. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π

0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
5
Câu 80. Tính lim
n+3
A. 0.
B. 3.
C. 1.
D. 2.
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 20a3 .
B. 10a3 .
C.
.
D. 40a3 .
3
Câu 82. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (4; +∞).
D. (−∞; 6, 5).
Câu 83. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.


C. 12.

D. 20.

Câu 84. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 85. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m > 0.
D. m < 0.
1
Câu 86. [1] Giá trị của biểu thức log √3
bằng
10
1
1
C. −3.
D. .
A. 3.
B. − .
3
3
2
x − 12x + 35
Câu 87. Tính lim

x→5
25 − 5x
2
2
A. +∞.
B. .
C. −∞.
D. − .
5
5
!
!
!
4x
1
2
2016
Câu 88. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.

D. T = 2016.
2017
Câu 89. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 90. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 91. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
18
9

6
Trang 7/10 Mã đề 1


8
Câu 92. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
Câu 93. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a3 5
a
6
a
15
A.
.
B. a3 6.
C.
.
D.
.

3
3
3
Câu 94. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 96. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.

C. 2n2 lần.
D. 2n3 lần.
2

Câu 97. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.
D. 3 − log2 3.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 98. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2016
2017
A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018
[ = 60◦ , S A ⊥ (ABCD).
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là



a3 3
a3 2
a3 2
3
.
B. a 3.
.
D.
.
A.
C.
4
12
6
Câu 100. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
D. D = (−2; 1).
log(mx)
Câu 101. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
2


Câu 102. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 103. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.424.000.
D. 102.016.000.
Câu 104. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và√AD bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.

2
3
Câu 105. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
Trang 8/10 Mã đề 1


(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.
Câu 106. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
Câu 107. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
các số tự nhiên. Tính S = m2 + 2n3

A. S = 24.
B. S = 135.
C. S = 32.
D. S = 22.
Câu 108. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 109. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

1
= 0.
n
D. lim qn = 0 (|q| > 1).
2mx + 1
1
Câu 110. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.

B. lim

Câu 111. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
24
12

Câu 112. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 8.
D. 30.
Câu 113. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 114. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là



a3 3
2a3 3
a3 3
3
A.
.

B.
.
C. a 3.
D.
.
3
6
3
1
Câu 116. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 3.
D. 2.
Câu 117. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 9/10 Mã đề 1


C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 118. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Năm cạnh.

D. Bốn cạnh.


Câu 119. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 2.

D. 3.

Câu 120. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 121. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
3
2
x
Câu 122. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.

Câu 123. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là

A. (2; 2).
B. (0; −2).
C. (−1; −7).
4x + 1
bằng?
Câu 124. [1] Tính lim
x→−∞ x + 1
A. −4.
B. 2.
C. −1.

D. (1; −3).

D. 4.

Câu 125. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
3

2

x

Câu 126. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt

và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 5
a 7
11a
a2 2
A.
.
B.
.
C.
.
D.
.
16
8
32
4

Câu 127. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 38
3a
a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 128. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
2

4
3
Câu 129. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 + i 3
−1 − i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
Câu 130. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

3.

2. A
B

4. A

5.

C

6.

7.

C

8. A
10.

B

11. A

12.

B

13. A


14.

9.

B

C

D

15.
17.

20.

B
B

21.

D

22.

23.

D

24. A


25. A

26.
D
C

30.

31.

C

32.

37.

B

28.

29.

C
D
B

34.

B


35.

D

18.

19. A

33.

C

16.

C

27.

D

C
B

D

36.

B

38.


B

39. A

40. A

41. A

42. A

43.

C

44.

45.

C

46.

B
C

47. A

48. A


49. A

50.

C

51. A

52.

C

54.

C

53.

C

55. A

56. A

57.

C

58.


59.

C

60.

61.

D

67.

D

62. A

63. A
65.

B

B
D
1

64.

C

66.


C

68.

C


69.

D

71.

B

72. A

73.

B

74.
C

75.
77.

76.


D
B

78.

B

79.

C

70.

C

80. A

C

81. A

82.

83. A

84. A

85. A

86.


B

88.

B

90.

B

87.

B
D

89.

B

92. A

93.

C

94. A

95.


C

96. A

97.

C

98.

99. A

C

101.

100. A
102.

C

104. A

D

103.

C

105.


C
C

106.

C

107.

108.

C

109.

D

111.

D

113.

D

115.

D


110. A
112.

B

114.

D

116.

B

117.

118.

B

119.

120.

C

121.

122.

C


123.

124.
126.

D

B
C
B
C

127. A

B

128.
130.

125.

C

D

129.

B


2

C



×