TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Câu 1. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 2. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2
A. −1.
B. 6.
1
Câu 3. [1] Giá trị của biểu thức log √3
bằng
10
1
A. .
B. 3.
3
Câu 4. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
Câu 5. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
3
Z
6
3x + 1
C. 2.
D. 4.
1
C. − .
3
D. −3.
. Tính
1
f (x)dx.
0
B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n
C. 8.
D. 20.
Câu 6. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
x2 − 12x + 35
Câu 8. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
C. +∞.
D. −∞.
5
5
Câu 9. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 10. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
D. 2e + 1.
e
Câu 11. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
23
1728
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Trang 1/11 Mã đề 1
3
Câu 12. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.
√
Câu 13. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. e3 .
D. 36.
Câu 14. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
A. −
.
B.
.
C.
.
D. − .
100
100
25
16
!
5 − 12x
Câu 15. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
x2 − 5x + 6
Câu 16. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. −1.
D. 1.
Câu 17. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.
D. 6.
Câu 18. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 19. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 20. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.
C. 6.
√
2
Câu 21. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
1 − 2n
Câu 22. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. .
C. 1.
3
3
D. 8.
D. −7.
2
D. − .
3
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.
Câu 23. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
Câu 24. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −5.
C. Không tồn tại.
D. −7.
3
Câu 25. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
log 2x
Câu 26. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
x ln 10
2x ln 10
x
2x3 ln 10
Câu 27. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (−∞; 2).
Trang 2/11 Mã đề 1
Câu 28. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+2
c+3
D.
3b + 3ac
.
c+1
Câu 29. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 30. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình chóp.
C. Hình lập phương.
D. Hình lăng trụ.
Câu 31. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 32. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.
D. 8 mặt.
Câu 33. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 4 mặt.
D. 3 mặt.
! x3 −3mx2 +m
1
Câu 34. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m ∈ R.
D. m , 0.
!
!
!
1
2
2016
4x
Câu 35. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T =
.
D. T = 1008.
2017
Câu 36. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = e + 3.
D. T = 4 + .
e
e
!
3n + 2
+ a2 − 4a = 0. Tổng các phần tử
Câu 37. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
x−3 x−2 x−1
x
Câu 38. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (−∞; 2).
C. (2; +∞).
D. [2; +∞).
Câu 39. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
Câu 40. [2] Tổng các nghiệm của phương trình 3
A. 8.
B. 7.
D. {4; 3}.
x2 −3x+8
= 92x−1 là
C. 6.
D. 5.
0 0 0 0
0
Câu 41.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
Trang 3/11 Mã đề 1
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. (I) và (II).
C. Cả ba mệnh đề.
D. (I) và (III).
Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
b a2 + c2
c a2 + b2
a b2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
1
Câu 44. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. −2.
D. 1.
π
Câu 45. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
x−2
Câu 46. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
D. −3.
3
1
Câu 47. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (1; +∞).
D. (−∞; 3).
2n + 1
Câu 48. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. .
D. 0.
3
2
2
Câu 49. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.
C. 144.
D. 4.
2
x
Câu 50. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
x
Câu 51. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. .
B. 1.
C.
.
D. .
2
2
2
Câu 52. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.
D. 10 mặt.
Câu 53. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
3
2
x−3 x−2
Câu 54. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Trang 4/11 Mã đề 1
Câu 55. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 24.
C. 21.
D. 22.
tan x + m
nghịch biến trên khoảng
Câu 56. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
!x
1
Câu 57. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
D. − log3 2.
x+3
Câu 58. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 59. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 60. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 61. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 62. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.
D. 0.
Câu 63.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 64. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
9
1
1
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 65. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (−∞; 1).
D. (0; 2).
Câu 66. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.
D. 2.
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
2a3 3
a3 3
a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Câu 68. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Trang 5/11 Mã đề 1
Câu 69. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 70. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
3
2
Câu 71. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
B. −3 − 4 2.
C. 3 + 4 2.
A. −3 + 4 2.
√
D. 3 − 4 2.
Câu 72. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
C.
A.
.
B. a 2.
.
D. a 3.
3
2
Câu 73. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
Câu 74. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 75. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
x=t
Câu 76. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 77. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 78. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 79. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1134 m.
D. 1202 m.
Câu 80. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.
D. m = −2.
Trang 6/11 Mã đề 1
Câu 81. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
Câu 82. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 + ln x.
x−2
.
2x + 1
1
C. y = x + .
x
D. y =
C. y0 = ln x − 1.
D. y0 = 1 − ln x.
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 3
a3 6
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Câu 84.
! nào sau đây sai?
Z Mệnh đề
0
f (x)dx = f (x).
A.
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 85.
[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
q
x+ log23 x + 1+4m−1 =
D. m ∈ [−1; 0].
Câu 86. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 87. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 46cm3 .
D. 64cm3 .
√
√
Câu 88. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √
√
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2 − 1, phần ảo là √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
x3 − 1
Câu 89. Tính lim
x→1 x − 1
A. 0.
B. +∞.
C. 3.
D. −∞.
Câu 90. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
A. lim [ f (x) + g(x)] = a + b.
B. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞
Câu 91. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
x→+∞
C. 12.
D. 8.
Câu 92.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 7/11 Mã đề 1
Câu 93. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. a.
D. .
A.
2
2
3
Câu 94. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 72.
C. 7, 2.
D. −7, 2.
Câu 95. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 96. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 97. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Câu 98. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
x−2 x−1
x
x+1
Câu 99. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 100.
√cạnh bằng a
√ Thể tích của tứ diện đều
3
3
a 2
a 2
.
B.
.
A.
4
12
√
a3 2
C.
.
6
√
a3 2
D.
.
2
Câu 101.
!n Dãy số nào sau đây có giới
!n hạn là 0?
1
5
A.
.
B. − .
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Câu 102. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 103. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
α+β
α β
αβ
α β
D. aα bα = (ab)α .
A. a = a .a .
B. a = (a ) .
C. β = a β .
a
Câu 104. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 105. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).
1
= 0.
nk
1
D. lim = 0.
n
B. lim
Câu 106. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).
Trang 8/11 Mã đề 1
Câu 107. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
C. 5.
A. 34.
B.
D. 68.
17
Câu 108. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R.
C. D = R \ {0}.
D. D = R \ {1}.
Câu 109. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 110. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 6.
D. 9.
A. .
2
2
Câu 111. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
8
Câu 112. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 113. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 114. [2] Số lượng của một lồi vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
Câu 115. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 6
a3 5
a3 15
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3
Câu 116. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√
√
√ thể tích của khối chóp 3S .ABC theo a
3
a 15
a
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
5
3
25
25
Câu 117. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
D. f 0 (0) =
.
ln 10
Câu 118. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (1; −3).
D. (0; −2).
Câu 119. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
Trang 9/11 Mã đề 1
Câu 120. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 6.
D. V = 4.
Câu 121. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 2
a 5
a 7
A.
.
B.
.
C.
.
D.
.
32
4
16
8
x+2
bằng?
Câu 122. Tính lim
x→2
x
A. 3.
B. 0.
C. 2.
D. 1.
Câu 123. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
là
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
√
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
Câu 124. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.
D. 12.
√
Câu 125. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD
√ là
3
3
3
4a 3
2a 3
a3
a
.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 127. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x
ln 2
Câu 128. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
!4x
3
2
≤
Câu 129. Tập các số x thỏa mãn
2
#
" 3 !
2
2
A. −∞; .
B.
; +∞ .
3
5
x→b
!2−x
là
#
2
C. −∞; .
5
"
!
2
D. − ; +∞ .
3
Câu 130. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
B
3.
C
D
4.
C
5. A
6.
B
7. A
8.
B
9. A
10. A
12.
11. A
13.
15.
14. A
C
16.
B
C
17.
20.
C
22.
B
23. A
D
24.
C
25.
27.
C
18. A
19. A
21.
B
26. A
B
28.
29.
D
B
30. A
31.
C
32.
33.
C
34.
35.
C
D
C
B
36.
C
37.
B
38.
39.
B
40.
B
41.
B
42.
B
43.
D
44.
45. A
46. A
47. A
48. A
49.
50.
C
51.
B
52. A
53.
B
54. A
55.
D
D
C
B
56.
C
57.
C
58.
C
59.
C
60.
C
61.
62.
D
63. A
64.
B
B
65.
D
66.
67.
D
68.
1
D
C
69.
70. A
C
71. A
C
72.
73.
C
74. A
75.
C
76.
C
78.
C
77.
D
80.
79. A
81.
D
82.
83.
D
84.
85.
D
86. A
87.
B
D
B
D
C
88.
89.
C
90.
91.
C
92. A
93.
C
94.
D
D
96.
D
97.
98.
D
99.
100.
B
C
101. A
C
102.
B
104. A
103.
C
105.
C
106.
B
107.
B
108.
B
109.
B
111.
B
110. A
112.
B
113.
114.
B
115. A
D
116.
D
117. A
118.
D
119.
D
120.
D
121.
D
D
122.
C
123.
124.
C
125. A
126.
B
128. A
130.
B
2
127.
D
129.
D