Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt cao1 (634)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.79 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.


.
3
9
9
9
9x
Câu 2. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. 1.
D. .
2
Câu 3. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 3.

Câu 4. Bát diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
2n + 1
Câu 5. Tính giới hạn lim
3n + 2

2
1
A. .
B. .
3
2

C. 2.

D. 1.

C. {3; 4}.

D. {4; 3}.

C.

3
.
2

D. 0.

d = 120◦ .
Câu 6. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 2a.
D. 4a.

A. 3a.
B.
2
Câu 7. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.
 π π
Câu 8. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.
Câu 9. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. R.

D. (−∞; 1).

Câu 10. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
3
2
Trang 1/10 Mã đề 1


12 + 22 + · · · + n2
Câu 11. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 12. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
.
B. 2 13.
C. 26.
D. 2.
A.
13
Câu 13. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (0; +∞).
Câu 14. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 6.
D. y(−2) = 22.
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .
D.

.
3
x2 − 5x + 6
Câu 16. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
C. 0.
D. −1.
Câu 17. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).

1
= 0.
nk
n
D. lim q = 0 (|q| > 1).

B. lim
2

Câu 18. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 6.
C. 7.


D. 5.

Câu 19. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 20.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 2].


C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 1].

Câu 21. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 11 năm.
D. 14 năm.
x−3 x−2 x−1
x
Câu 22. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).

D. (−∞; 2].
Trang 2/10 Mã đề 1


Câu 23. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 24. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B.
.
C. 2.

D. 3.
3
Câu 26. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
C. m = ±1.
D. m = ± 3.
A. m = ±3.
B. m = ± 2.
1
Câu 27. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 28. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 8.
D. 3.
Câu 29. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2

3
2
Câu 30. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

A. lim [ f (x)g(x)] = ab.
x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim

x→+∞

f (x) a
= .
g(x) b

Câu 31. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.

C. 15 tháng.
D. 18 tháng.
[ = 60◦ , S O
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 33. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 5.

D. 3.

Câu 34. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 7.

B. 0.

C. 5.

D. 9.
Trang 3/10 Mã đề 1


Câu 35. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
Câu 36. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.
! x3 −3mx2 +m
1

Câu 37. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 38. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

C. 4.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 39. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.

D. 9.

Câu 40. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 41. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai

x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
2
2
1 1
1
x y−2 z−3
x−2 y−2 z−3
C. =

=
.
D.
=
=
.
2
3
−1
2
3
4
Câu 42. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
cos n + sin n
Câu 43. Tính lim
n2 + 1
A. 1.
B. 0.
C. −∞.
D. +∞.
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3

3
3

a 2
a 3
a 3
.
B.
.
C. a3 3.
D.
.
A.
2
4
2
Câu 45. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 46. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 47. Khối đa diện đều loại {3; 5} có số mặt

A. 30.
B. 20.

C. 12.
D. 8.
log(mx)
Câu 48. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 49. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 3.

D. 4.
Trang 4/10 Mã đề 1


Câu 50. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. 7, 2.

D. −7, 2.


Câu 51. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 5%.
D. 0, 7%.
Câu 52. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
!
3n + 2
2
Câu 53. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử

n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
un
Câu 54. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 55. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
d = 60◦ . Đường chéo
Câu 56. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3

.
C.
.
D.
.
A. a 6.
B.
3
3
3
Câu 57. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 24.
C. 20.
D. 15, 36.
Câu 58. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vơ nghiệm.
C. 3.

D. 2.

Câu 59. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. −5.

D. Không tồn tại.


Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 61.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

Câu 62. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Trang 5/10 Mã đề 1


Câu 63. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
Câu 64. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 6510 m.
D. 1202 m.
Câu 65. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a


x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24

48
16
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 67. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 68. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
A.
.
B.
.
C. 2a 2.
.
D.

24
24
12
Câu 69. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 70. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
3
3
9

Câu 71. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.


Câu 72. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6√− x
A. 3.
B. 3 2.
C. 2 3.

D. 1.
D. 2 +


3.

Câu 73. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Trang 6/10 Mã đề 1



a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.
D. 1.

Câu 74. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.

B. 4.

Câu 75. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Có hai.
D. Khơng có.
Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. √
.
C. √

.
D. 2
.
A. √
2
2
2
2
2
2
a + b2
a +b
a +b
2 a +b
Câu 77. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 78. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.

C. 10.

D. 4.


Câu 79. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (1; +∞).
C. (−∞; 1).

D. (−1; 1).

Câu 80. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 81. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 4.
C. 2.
D. 24.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 82. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.

Câu 83. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.
D. S = 32.

Câu 84. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 85. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.



Câu 86. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 87. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. 16π.
D. V = 4π.
1

Câu 88. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).

D. D = R.
Trang 7/10 Mã đề 1


Câu 89. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 216 triệu.

C. 210 triệu.
D. 220 triệu.
Câu 90. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 91. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.


4n2 + 1 − n + 2
bằng
Câu 92. Tính lim
2n − 3
3
A. .
B. +∞.
2
Câu 93.

C. D = (0; +∞).

D. D = R.

C. 2.

D. 1.


[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].

C. m ∈ [−1; 0].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 2].

Câu 94. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3!
1
D. Hàm số đồng biến trên khoảng ; 1 .
3


Câu 95. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
x+1
bằng
Câu 96. Tính lim
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
3
2
Câu 97.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
A.
xα dx =
α+1

Z
Z x
C.

dx = x + C, C là hằng số.

0dx = C, C là hằng số.

D.

!2x−1
!2−x
3
3
Câu 98. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].

D. [1; +∞).

Câu 99. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.

D. Một tứ diện đều và bốn hình chóp tam giác đều.
1 − n2
Câu 100. [1] Tính lim 2
bằng?
2n + 1
1
A. .
B. 0.
2

C.

1
.
3

1
D. − .
2
Trang 8/10 Mã đề 1


Câu 101. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.

sai.
Câu 102. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 6
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
log2 240 log2 15
Câu 103. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 1.

D. 4.
x+2
Câu 104. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
Câu 105. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

C. 9 cạnh.

D. 11 cạnh.

Câu 106. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

C. 4.

D. 8.

Câu 107. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.


C. 4.

D. 5.

3
2
x
Câu 108. [2] Tìm m để giá trị nhỏ nhất
√ + 1)2 trên [0; 1] bằng 2
√ của hàm số y = 2x + (m
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
Z 2
ln(x + 1)
Câu 109. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 0.
C. 1.
D. −3.

Câu 110. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =

.
C. log2 a =
.
D. log2 a = loga 2.
log2 a
loga 2
2

Câu 111. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 3 .
e
2e
2 e

D.

1
.
e2

Câu 112. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (0; −2).


D. (1; −3).

Câu 114. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.

D. Bốn mặt.


Câu 113. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
12
4
3

Trang 9/10 Mã đề 1



1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).

Câu 115. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

Câu 116. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 117. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.

C. 6.

D. 10.


Câu 118. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − 2 .
C. − .
D. −e.
A. − .
2e
e
e
x−1
Câu 120. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
Câu 121. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?

A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

tan x + m
nghịch biến trên khoảng
Câu 122. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).

C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 123. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 14.
D. ln 4.
Câu 124. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 125. [12210d] Xét các số thực dương x, y thỏa mãn log3
nhất Pmin của P√ = x + y.
9 11 − 19
A. Pmin =
.
9

B. Pmin


9 11 + 19
=
.
9

Câu 126. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.


C. Pmin

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y


2 11 − 3
=
.
3

C. 12.

D. Pmin


18 11 − 29
=
.
21

D. 30.

Câu 127. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

Câu 128. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = −8.

D. x = 0.
Trang 10/10 Mã đề 1


1
Câu 129. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log2 3.
B. − log3 2.
C. log2 3.
1−x

Câu 130. [3-1229d] Đạo hàm của hàm số y =
1 − 2 ln 2x
1
A. y0 = 3
.
B. y0 = 3
.
x ln 10
2x ln 10

!x



log 2x

x2
1 − 2 log 2x
C. y0 =
.
x3

D. 1 − log2 3.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D
B


5. A
C

4.

C

10.

B

C
B

12. A

13.

14.

C

B

16.

B
D

17.


D

18.

19. A

C

20. A

21.

C

22.

23.

C

24. A

25.

C

26.

27. A

29.
31.

B

8.

11. A
15.

C

6.

7.
9.

2.

D
B

C
B

28.

D

30.


D

32. A

33. A

34.

D
D

35.

B

36.

37.

B

38.

B

40.

B


39.

C

41.

B

42. A

43.

B

44.

45.

B

46.

47.

B

48.

D
B

C

49.

D

50.

51.

D

52.

B

53.

D

54.

B

55.

D

56. A


57.

D

58. A

59.

D

60.

61. A
63.

C

62. A
B

64.

65. A
67.

D

66. A
B


68. A
1

C


69.
71.

D
B

70.

B

72.

B

73.

C

74.

75.

C


76.

77.

D

78. A

79.

D

80.

83.

D

84.

B

C

B

89. A

90.


D

91.

92.

D

93.

94.

B

95. A

96.

B

97. A

98.

D

100.

D


D
C

99.

D

101. A

B

104.

D

86. A

B

88.

102.

B

82.

81. A
85.


C

103.
C

B

105. A

106. A

C

107.
D

108.

109.

D

110.

C

111.

D


112.

C

113.

D

D

114.
116.

115.

B

117.

118.

D

C

119. A

120. A
122.


B

D

124. A

121.

C

123.

C

125.

C
C

126.

C

127.

128.

C

129. A


130. A

2



×