Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt cao1 (541)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 < m ≤ 3.

Câu 2. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.

1
3|x−2|

= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 ≤ m ≤ 3.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.

Câu 3. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng


A. −2.
B. 4.
C. 2.
D. −4.

x2 + 3x + 5
Câu 4. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. 1.
D. − .
A. 0.
B. .
4
4
Câu 5. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
Câu 6. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 7.
D. 1.
Câu 7. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.

B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là −1.
Câu 8. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 9. Dãy số nào có giới hạn bằng 0? !
n
n3 − 3n
−2
A. un =
.
B. un =
.
n+1
3

!n
6
C. un =
.
5

D. un = n2 − 4n.

Câu 10. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.

B. 1.
C. e2016 .
D. 22016 .
Câu 11. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
8
4
2
Câu 12. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
Câu 13. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Trang 1/11 Mã đề 1



log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.

Câu 14. [1226d] Tìm tham số thực m để phương trình
A. m ≤ 0.

B. m < 0.

Câu 15. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.

8
24
24
48
1 − 2n
Câu 16. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
Câu 17. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
B.
.
C.
.
D.

.
A. .
9
9
9
9
Câu 18. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
Câu 19. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
1
Câu 20. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. 3.
C. − .
D. −3.
3
3




x = 1 + 3t




Câu 21. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+

2t
x
=
1
+
3t
x
=
−1
+
2t
x = 1 + 7t
















A. 
C. 

.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t
















z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
z = 1 + 5t




− 3m + 4 = 0 có nghiệm

9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
1
Câu 23. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; 3).

Câu 22. [12215d] Tìm m để phương trình 4 x+
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
4

1−x2

− 4.2 x+

Câu 24.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.


0dx = C, C là hằng số.

1−x2

xα+1
B.
x dx =
+ C, C là hằng số.
α+1
Z
1
D.
dx = ln |x| + C, C là hằng số.
x
α

Câu 25. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =

x2
trên đoạn [−1; 1]. Khi đó
ex
Trang 2/11 Mã đề 1


1
A. M = e, m = .
B. M = e, m = 1.
e
Câu 26. Khối đa diện đều loại {5; 3} có số mặt

A. 12.
B. 8.

1
C. M = , m = 0.
e

D. M = e, m = 0.

C. 30.

D. 20.

Câu 27. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.

Câu 28. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =

.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 29. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
.
B. y0 =
.
C. y0 = .
D.
.
A. y0 =
x
x ln 10
x
10 ln x
Câu 30. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13

9
23
5
A.
.
B.
.
C. −
.
D. − .
100
25
100
16
Câu 31. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 32. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 2.
C. 1.
D. 10.



x=t





Câu 33. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4

√3
4
Câu 34. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
7
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 35. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2

Câu 36. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B.
.
C.
.
D. a 3.
2
3
log3 12
Câu 37. [1] Giá trị của biểu thức 9
bằng
A. 24.
B. 4.
C. 144.
D. 2.
Câu 38. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −3.

D. −5.
Trang 3/11 Mã đề 1



x2 − 12x + 35
Câu 39. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
Câu 40. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 14 năm.
C. 10 năm.
D. 12 năm.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 41. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 0.

C. 1.
D. −5.
!
3n + 2
2
Câu 42. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 5.
D. 4.
Câu 43. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
Câu 44. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a

a 3
.
B. .
C. .
D. a.
A.
2
2
3
Câu 45. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
C. 5.
D. 2.
Câu 46. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

1
= 0.
n
D. lim qn = 0 (|q| > 1).

B. lim

Câu 47. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.

C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 48. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 49. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 1; m = 1.
Câu 50. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.

C. 20.

D. 8.

Câu 51. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Trang 4/11 Mã đề 1


 π

Câu 52. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2

3 π6
1 π
B. 1.
C.
e .
A. e 3 .
2
2
2n + 1
Câu 53. Tính giới hạn lim
3n + 2
2
3
1
A. .
B. .
C. .
3
2
2
Câu 54. Bát diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {5; 3}.


2 π4

D.
e .
2

D. 0.
D. {3; 3}.

Câu 55. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.
D. 7.
2
2
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là

3
3
3
3
8a 3
8a 3
a 3
4a 3

.
B.
.
C.
.
D.
.
A.
9
9
3
9
Câu 57. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Khơng có.
D. Có một.
Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
B. 2
.
C. √
.

D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 59. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > 1.
C. m ≥ 0.

D. m > −1.

Câu 61. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a


x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 62. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. 3 + 4 2.
A. 3 − 4 2.
3

2


D. −3 + 4 2.

Câu 63.
đề nào sau đây

Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 64. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
Trang 5/11 Mã đề 1



1
A. k = .
9

1
B. k = .
6

C. k =

1
.
15

D. k =

1
.
18

Câu 65. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
5a3 3

4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 66. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 67. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
4
4
log(mx)

Câu 68. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
1
Câu 69. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 70. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3

C. 1.
D. 4.

Câu 71. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.

B. 7.

Câu 72. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 73. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
x−2
Câu 74. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
Câu 75.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.

.
12
4

C. 30.

D. 20.

C. 2.

2
D. − .
3


a3 2
C.
.
2


a3 2
D.
.
6

Câu 76. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

f (x) a

A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

D. lim [ f (x) + g(x)] = a + b.
x→+∞

Trang 6/11 Mã đề 1


Câu 77. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16
1

Câu 79. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R \ {1}.

Câu 80. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0

đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 81. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Câu 82. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
8
Câu 83. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
Câu 84. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là
vng góc
√ Khoảng cách từ O đến (S BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
.
B.
.
C. a 57.
D.
A.
17
19
2
Câu 85. Tính

√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D.
log 2x
Câu 86. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
x ln 10
2x3 ln 10
2x3 ln 10
Câu 87. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D.


[ = 60◦ , S O
a. Góc BAD

2a 57
.
19
|z| =

y0 =


5.

1 − 2 log 2x
.
x3

Khối lập phương.

Câu 88. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
36
24
6
Câu 89. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Hai mặt.

D. Ba mặt.
Trang 7/11 Mã đề 1



Câu 91. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 92. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 8.
D. 12.
1 3
Câu 93. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 94. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = R.
D. D = (−2; 1).
1
Câu 95. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.

C. m = 4.
D. m = −3.
2

Câu 96. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Một mặt.

D. Hai mặt.

2

Câu 97. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. 2 .
C. 3 .
A. √ .
e
2e
2 e

D.

2
.
e3


Câu 98. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 20a .
B. 40a .
C. 10a .
D.
.
3
x3 − 1
Câu 100. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. 0.
D. +∞.
2

Câu 101. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.

B. 1 − log3 2.
C. 3 − log2 3.

D. 1 − log2 3.

Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 103. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
C.
.
D. 2a 2.
A.
2
4
log 2x
Câu 104. [1229d] Đạo hàm của hàm số y =


x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Trang 8/11 Mã đề 1


Câu 105. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
B. 27.
C. 18.
D. 12.

A.
2
Câu 106. Tính lim
A. 2.

2n2 − 1
3n6 + n4
2
B. .
3

C. 1.

D. 0.

ln x p 2
1
Câu 107. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
B. .
C. .
D. .
A. .
9

3
3
9
d = 120◦ .
Câu 108. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 2a.
C. 3a.
D. 4a.
A.
2
Câu 109. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a

x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3
3

a
a
2a
3
3
3
.
C.
.
D.
.
A. a3 3.
B.
3
6
3
3a
Câu 111. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a

a
2a
A.
.
B. .
C. .
D.
.
3
4
3
3
Câu 112. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

Câu 113. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. +∞.

C. 1.

D. y0 = 1 + ln x.
un
bằng
vn
D. 0.


Câu 114. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
log7 16
Câu 115. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −2.
C. −4.
D. 2.
Câu 116. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. 6.
D. .
2
2
Câu 117. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.

B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Trang 9/11 Mã đề 1


Câu 118. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4
4
4
2n − 3
bằng
Câu 119. Tính lim 2
2n + 3n + 1
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 120. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].

B. [1; +∞).
C. (−∞; −3].
D. [−1; 3].
Câu 121. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.

C. 3.

D. 1.
x+2
Câu 122. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vơ số.
D. 2.
Câu 123. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −5.

D. x = −2.

Câu 124. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



3
3

a
a
a3 5
15
6
.
B. a3 6.
C.
.
D.
.
A.
3
3
3
Z 3
x
a
a
Câu 125. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1

trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
C. P = 16.
D. P = −2.
!2x−1
!2−x
3
3


Câu 126. Tập các số x thỏa mãn
5
5
A. [1; +∞).
B. [3; +∞).
C. (−∞; 1].
D. (+∞; −∞).
Câu 127. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 6.

C. 12.
D. 8.
ln2 x
m
Câu 128. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

các số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
Câu 129. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 130. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. m ≤ 3.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A
C


5.
7.
9.

6. A
D

8.
12.

C

C

14.

B

15.

B

10. A

B

11.
13.


D

4.

3. A

16.

C

D
B

17.

B

18.

C

19.

B

20.

C

21. A

23.

22. A
B

24.
D

25.

26. A

27. A
29.

28.
B

31.

B

C

B

30.

C


32.

C

33.

B

34.

B

35.

B

36.

B

37.

C

38. A
40. A

39. A

42.


D

44.

D

45. A

46.

D

47. A

48. A

41.

B
D

43.

49.

B

50.


51. A

52.

53. A

54. A

55.

B

56.

57.

B

58.

60.

D

61. A

62.

D


63.

B
D
B
D
C

65. A

66.

B

67. A

68.

B

69.

70.

B
1

D



71.

72.

B

73. A

74. A

75. A

76. A

77.
79.

78.

C
B
D

81.
83. A
85.

C

B


C

80.

B

82.

B

84.

B

86. A
D

87.

88. A
90.

89. A
91.

D

92. A


93.

D

94.

95. A

D
C

96. A
98.

B

99. A

100.

B

101. A

102.

103. A

104.


D

106.

D

97.

B

105.

C

107. A
109.

C

108. A
B

110.

D
D

111.

D


112.

113.

D

114. A

115.

C

117.

116. A
D

119.

118.

C

B

120. A

121.


B

122.

D

123.

B

124.

D

125. A

126. A

127.
129.

D

128. A

B

130. A

2




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×