Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt cao1 (685)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.8 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 3.

D. 2.

x2

Câu 2. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 1 − log3 2.
B. 2 − log2 3.
C. 1 − log2 3.
D. 3 − log2 3.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 3. Cho
x2
1
A. 1.


B. 0.
C. −3.
D. 3.

x2 + 3x + 5
Câu 4. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
Câu 5. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.

2
3
7
2
1
Câu 6. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 2.
B. 1.
C. 4.
D. 3.
Câu 7. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.
D. 0.
2
x − 12x + 35
Câu 8. Tính lim
x→5
25 − 5x
2
2
A. −∞.
B. − .
C. .
D. +∞.
5
5
Câu 9. √

Thể tích của tứ diện đều cạnh
√ bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
12
6
4
Câu 10. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 11. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.

C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 12. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
C. 34.
D. 5.
.
B. 68.
17
Câu 13. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 14. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B. a 2.
C.

.
D.
.
2
3
Trang 1/10 Mã đề 1


Câu 15. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
d = 30◦ , biết S BC là tam giác đều
Câu 16. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39

a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
16
9
26
!
5 − 12x
Câu 17. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 18. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.


4n2 + 1 − n + 2
bằng

Câu 19. Tính lim
2n − 3
3
A. 1.
B. .
2
Câu 20. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. 6.

D. 8.

C. +∞.

D. 2.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 21. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ± 2.
B. m = ±3.
C. m = ±1.
D. m = ± 3.
Câu 22. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


A. aαβ = (aα )β .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Z 3
x
a
a
Câu 23. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.
D. P = −2.
Câu 24. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
5a3 3
2a3 3
4a3 3

.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 25. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
2 . ln x
ln 2
Câu 26. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1637
23
1728
A.

.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 27. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
x
x
x
Câu 28. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 2.
B. Vô nghiệm.

C. 1.
D. 3.
Trang 2/10 Mã đề 1


Câu 29. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

0

0

0

Câu 30. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





20 3
14 3
B. 8 3.
C.
A. 6 3.
.
D.
.
3
3
Câu 31. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =

triệu.
D. m =
triệu.
3
(1, 01)3 − 1



x=t




Câu 32. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9

2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 33. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 34. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

Câu 35. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.


Câu 36. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 37. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 38. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 39. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 5.

D. 3.
Trang 3/10 Mã đề 1



Câu 40. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 41. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 42. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 43. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là 3 √

3
3

2a
3
a
3
a
3
.
C.
.
D.
.
B.
A. a3 3.
3
6
3
log 2x
Câu 44. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1

.
B. y0 =
.
C. y0 = 3
.
D. y0 =
A. y0 = 3
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 45. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.

D.
.
9
2
12
4
1 − n2
Câu 46. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. 0.
C. .
D. .
2
3
2
Câu 47.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z

Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 48. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
 π
Câu 49. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A.

e .
B. e .
C. 1.
D.
e .
2
2
2
Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
48

24
Trang 4/10 Mã đề 1


Câu 51. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.




2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 52. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
.
C. 3.
A. 1.
B.
D. 2.
3
Câu 53. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 54. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.

C. 20.

Câu 55. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.

D. 30.
D. x = −8.

Câu 56. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].

B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 57. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.

C. 12.
D. 20.
1
Câu 58. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 59. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
C. 2a 2.
D.
.
A.

2
4
Câu 60. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
3a
Câu 61. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
x+2
Câu 62. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. 1.
D. Vô số.
a
1
Câu 63. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
log2 240 log2 15
Câu 64. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. −8.
D. 3.
Trang 5/10 Mã đề 1


Câu 65. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là

27
A.
.
B. 18.
C. 12.
D. 27.
2
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 66. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. 1.
D. −2.
Câu 67. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.

C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 68. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4

Câu 69. √Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −6 2.
B. −7.
C. 7.
D. 6 2.
Câu 70. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).

B. [6, 5; +∞).
C. (4; +∞).

Câu 71. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
B. V = a3 2.
C.
A. 2a3 2.
.
3

D. (4; 6, 5].

D. V = 2a3 .

Câu 72. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 8π.
D. 16π.
Câu 73. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 6.
A. 9.

B. .
2
2
Câu 74. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .
D. a.
3
2
2
Câu 75. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 76. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 9 mặt.
C. 7 mặt.

D. 6 mặt.


Câu 77. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 78. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].

D. (−∞; +∞).
Trang 6/10 Mã đề 1


1 − 2n
Câu 79. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. − .
3
3

C.


2
.
3

D. 1.

Câu 80. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
Câu 81. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
x+1
Câu 82. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
6
3

C. 1.

D.


1
.
2

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
D. 1.
A. −1.
B. 2.
C. .
2
log 2x
Câu 84. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
A. y0 =
.

3
2x ln 10
2x ln 10
x ln 10
x3
Câu 85. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. √
.
B. 2
.
D. √
.
.
C. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 83. [2-c] Cho hàm số f (x) =

Câu 86. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.


D. 3.

Câu 87. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R \ {0}.

C. D = R.

D. D = (0; +∞).

C. 2.

D. 0.

Câu 88. Tính lim
A. 1.

n−1
n2 + 2

B. 3.

Câu 89. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.
1

Câu 90. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 91. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 92. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Trang 7/10 Mã đề 1



Câu 93. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 11 năm.
D. 12 năm.
Câu 94. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
2

Câu 95. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 5.

D. 8.

Câu 96. Khối lập phương thuộc loại
A. {3; 4}.
B. {4; 3}.

D. {3; 3}.


C. {5; 3}.


Câu 97. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
3
12
Câu 98. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.
Câu 99. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.

B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
Câu 100. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {4; 3}.
C. {3; 3}.

D. {5; 3}.

Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.

3

Câu 102. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .
D. e.
Câu 103. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (2; 4; 3).
D. (1; 3; 2).

Câu 104. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 13.
C. 9.

D. Không tồn tại.

Câu 105. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. (I) và (III).

Câu 106. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.

D. Cả ba mệnh đề.
D. −1 + 2 sin 2x.
Trang 8/10 Mã đề 1


Câu 107. [2] Đạo hàm của hàm số y = x ln x là

A. y0 = 1 − ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

D. y0 = x + ln x.

Câu 108. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 109.
!n Dãy số nào sau đây có giới
!n hạn là 0?
5
1
.
B. − .
A.
3
3

!n
4
C.
.
e

!n
5
D.
.

3

Câu 110. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
4
12
8
x+1
Câu 111. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. 1.
C. .

D. .
4
3
2
Câu 112. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5}.
C. {5; 2}.
D. {3}.

Câu 113. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6

36
6
18
Câu 114. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2


x+ 1−x2



D. −6.

Câu 115. [12215d] Tìm m để phương trình 4
− 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. 0 < m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
A. 0 ≤ m ≤ .
4
4
4
!
1

1
1
Câu 116. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 0.
D. 1.
2
Câu 117. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 118. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

2

C. 11 cạnh.

D. 12 cạnh.

Câu 119. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.

B. 2.
C. Vô nghiệm.
D. 3.
Câu 120. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
2
2
log7 16
Câu 121. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. −4.
C. 2.

D. 1.

D. 4.

Câu 122. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 9/10 Mã đề 1



(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 123. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 1.
D. 0.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là

3
3
3
a
2a 3
4a3 3
a
.
B.
.
C.

.
D.
.
A.
6
3
3
3
3
2
x
Câu 125. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 126. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
5a
8a
a
A.
.
B.
.
C.
.

D. .
9
9
9
9
Câu 127. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
2
4
3
Câu 128. Cho z là nghiệm của phương trình

√ x + x + 1 = 0. Tính P = z + 2z − z
−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.

D. Số cạnh của khối chóp bằng 2n.

Câu 130. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 24.
D. 15, 36.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3.
5.

2.
C

9.

6.

D

B
D

11.
13.

4. A

B

7.

D
C

10.

C
C
C

18.

C
B

20.


B

22.

B

24. A

25.
27.

C

16. A

19. A
23.

8.

14.

15.

21.

B

12. A


B

17.

B

D

26.

B

B

28.

29. A

C

30. A

31.

D

32.

C


33. A

34.

D

35. A

36.

D

37.

D

38. A
40.

39. A
41.

D

42. A

43.

D


44.

45.

C

46. A

47.

C

48.

49.
51.

D
B

52.

D

54. A

55.

D


56. A
58.

C

59. A

60.

61. A

62.

65.
67.

C
D

D

63.

C

50.

53.
57.


B

C

C
D
B

64.

C

66. A

B
D

68.
1

B


69.

70.

D

71. A


73.
D

74.

D
B

75. A
77.

B

79.

B

80. A

81.

B

82. A

83.

76.


B

78.

D

84.

85. A

C

86.

D

87.

88.

D

89.

90.

D

91. A


92.
96.

B
C
D

100.
102.

C

97.

B

99.

B

101.

B

C

103. A

104. A


105. A

106.

D

107.

108.

D

109. A

110.

D

111.

112.

B

95. A

C

98.


C

93.

B

94.

D

C
C
D

113.

B

114. A
116.

D

115.

C

117.

C


118.

B

119.

B

120.

B

121.

B

122.

D

123.

124.

D

125.

126.


127.

C

129.

128. A
130.

D

2

D
C
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×