Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; 3; 1).
B. M ′ (−2; −3; −1).
C. M ′ (−2; 3; 1).
D. M ′ (2; −3; −1).
Câu 2. Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD là hình bình hành. Hình chiếu vng góc của A′
lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc giữa mặt
bên (ABB′ A′ ) và mặt đáy bằng 450 . Tính thể tích khối tứ diện ACB′ D′ theo a.
A. 20a3 .
B. 60a3 .
C. 100a3 .
D. 30a3 .
Rm
dx
Câu 3. Cho số thực dươngm. Tính I =
theo m?
2
0 x + 3x + 2
2m + 2
m+1
m+2
m+2
A. I = ln(
).
B. I = ln(
).
C. I = ln(
).
D. I = ln(
).
m+2
m+2
2m + 2
m+1
R1 √3
Câu 4. Tính I =
7x + 1dx
0
60
21
45
20
A. I = .
B. I = .
C. I = .
D. I = .
28
8
28
7
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có
tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo
dây cung dài nhất?
A. x = 5 + ty = 5 + 2tz = 2.
B. x = 5 + 2ty = 5 + tz = 2.
C. x = 3 + 2ty = 4 + tz = 6.
D. x = 5 + 2ty = 5 + tz = 2 − 4t.
Câu 6. Số nghiệm của phương trình 9 x + 5.3 x − 6 = 0 là
A. 0.
B. 1.
C. 2.
D. 4.
1
là đúng?
x
B. Hàm số đồng biến trên R.
D. Hàm số nghịch biến trên R.
Câu 7. Kết luận nào sau đây về tính đơn điệu của hàm số y =
A. Hàm số nghịch biến trên (0; +∞).
C. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
Câu 8. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. aloga x = x.
B. loga x2 = 2loga x.
1
C. loga2 x = loga x.
D. loga (x − 2)2 = 2loga (x − 2).
2
√
Câu 9. Cho a > 0 và a , 1. Giá trị của alog a 3 bằng?
√
A. 6.
B. 9.
C. 3.
D. 3.
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4). Tìm tọa độ trung
điểm I của đoạn thẳng AB.
A. I(0; 1; 2).
B. I(0; −1; 2).
C. I(1; 1; 2).
D. I(0; 1; −2).
√
x
Câu 11. Tìm nghiệm của phương trình 2 x = ( 3) .
A. x = 2.
B. x = 0.
C. x = 1.
D. x = −1.
Câu 12. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ −1.
B. m ≥ 1.
C. m > 1.
D. m ≥ 0.
Câu 13. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
A. .
B. .
C. .
D. .
6
4
3
9
Trang 1/4 Mã đề 001
Câu 14. Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng
biến thiên như hình bên. Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân
biệt.
S
S
7
7
7
D. [ ; 2] [22; +∞).
A. [22; +∞).
B. ( ; 2] [22; +∞) . C. ( ; +∞)
4
4
4
.
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3). Tìm tọa độ điểm A là hình chiếu
của M trên mặt phẳng (Oxy).
A. A(0; 0; 3).
B. A(0; 2; 3).
C. A(1; 0; 3).
D. A(1; 2; 0).
Câu 16. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
B. Không tồn tại m.
C. m < .
D. m < 0.
A. 0 < m < .
3
3
Câu 17. Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm
số y = 3x2 + log3 x + m là:
A. S = [ 0; +∞).
B. S = (−∞; ln3).
C. S = [ -ln3; +∞).
D. S = (−∞; 2).
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; −3; −1).
B. M ′ (2; 3; 1).
C. M ′ (−2; 3; 1).
D. M ′ (2; −3; −1).
1
là đúng?
x
A. Hàm số đồng biến trên (−∞; 0) ∪ (0; +∞).
B. Hàm số nghịch biến trên R.
C. Hàm số nghịch biến trên (0; +∞).
D. Hàm số đồng biến trên R.
√
Câu 20. Cho hình phẳng (D) giới hạn bởi các đường y = x, y = x, x = 2 quay quanh trục hồnh. Tìm
thể tích V của khối trịn xoay tạo thành.
10π
π
A. V = 1.
B. V =
.
C. V = .
D. V = π.
3
3
Câu 19. Kết luận nào sau đây về tính đơn điệu của hàm số y =
Câu 21. Đồ thị hàm số nào sau đây có vơ số đường tiệm cận đứng?
A. y = x3 − 2x2 + 3x + 2.
B. y = tan x.
3x + 1
C. y = sin x .
D. y =
.
x−1
Câu 22. Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y = −x2 + 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2.
7
A. m ∈ (0; 2).
B. m ∈ (−1; 2).
C. −1 < m < .
D. m ≥ 0.
2
x
Câu 23. Giá trị nhỏ nhất của hàm số y = 2
trên tập xác định của nó là
x +1
1
1
A. min y = − .
B. min y = −1.
C. min y = 0.
D. min y = .
R
R
R
R
2
2
Câu 24. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≥ 1.
B. m > 1.
C. m < 1.
D. m ≤ 1.
Câu 25. Cho hình chóp đều S .ABCD có đáy ABCD là hình vng cạnh 2a, đường cao của hình chóp
bằng a. Tính góc giữa hai mặt phẳng (S AC) và (S AB).
A. 450 .
B. 360 .
C. 600 .
D. 300 .
1
1
1
Câu 26. Rút gọn biểu thức M =
+
+ ... +
ta được:
loga x loga2 x
logak x
k(k + 1)
k(k + 1)
4k(k + 1)
k(k + 1)
A. M =
.
B. M =
.
C. M =
.
D. M =
.
loga x
3loga x
loga x
2loga x
Trang 2/4 Mã đề 001
Câu 27. Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1;
Độ dài đường cao AH của tứ diện ABCD là:
A. 5 .
B. 7 .
C. 6.
D. 9 .
Câu 28. Một thùng đựng nước có dạng hình trụ có chiều cao h và bán kính đáy√bằng R. Khi đặt thùng
R 3
nước nằm ngang như hình 1 thì khoảng cách từ trục hình trụ tới mặt nước bằng
(mặt nước thấp hơn
2
trục của hình trụ). Khi đặt thùng nước thẳng đứng như hình 2 thì chiều cao của mực nước trong thùng là
h1
h1 . Tính tỉ số
√ h
√
√
√
2π − 3
π− 3
2π − 3 3
3
A.
.
B.
.
C.
.
D.
.
12
6
12
4
Câu 29. Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1). Mặt cầu đường kính AB có phương trình
A. (x − 1)2 + (y + 1)2 + (z + 2)2 = 6.
B. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
√
C. (x + 1)2 + (y − 1)2 + (z − 2)2 = 24.
D. (x + 1)2 + (y − 1)2 + (z − 2)2 = 6.
x−3
y−6
z−1
=
=
và
−2
2
1
d2 : x = ty = −tz = 2 (t ∈ R). Đường thẳng đi qua điểm A(0; 1; 1), vng góc với d1 và cắt d2 có phương
trình là:
x−1
y
z−1
x y−1 z−1
A.
=
=
.
B. =
=
.
−1
−3
4
1
−3
4
x
y−1 z−1
x
y−1 z−1
C.
=
=
.
D.
=
=
.
−1
3
4
−1
−3
4
Câu 31. Tìm tập hợp tất cả các giá trị của tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm
cực đại có hồnh độ nhỏ hơn 1.
A. S = (−∞; −4) ∪ (−1; +∞) .
B. S = (−1; +∞) .
C. S = (−4; −1).
D. S = [−1; +∞) .
√
Câu 32. Cho hình chóp S .ABC có S A⊥(ABC), S A = a 3. Tam giác ABC vuông cân tại B, AC = 2a.
Thể tích khối chóp S .ABC là √
√
√
√
a3 3
a3 3
2a3 3
3
B.
.
C.
.
D.
.
A. a 3 .
6
3
3
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :
Câu 33. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
9
5
3
7
A. .
B. .
C. .
D. .
4
4
4
4
Câu 34. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ tích của khối trụ (T ) lớn
√ nhất bằng bao nhiêu. √
√
400π 3
250π 3
500π 3
125π 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 35. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x = ay ⇔ x = y.
B. Nếu a < 1 thì a x > ay ⇔ x < y.
C. Nếu a > 0 thì a x > ay ⇔ x < y.
D. Nếu a > 1 thì a x > ay ⇔ x > y.
Câu 36. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 4.
B. m = 1.
C. m = 0 hoặc m = −10.
D. m = 0 hoặc m = −16.
Câu 37. Chọn mệnh đề đúng trong các mệnh đề sau:
R
R
e2x
A. 5 x dx =5 x + C .
B. e2x dx =
+ C.
2
R
R
(2x + 1)3
2
C. sin xdx = cos x + C .
D. (2x + 1) dx =
+C .
3
Trang 3/4 Mã đề 001
√
2x − x2 + 3
Câu 38. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 2.
B. 0.
C. 1.
D. 3.
Câu 39. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080255 đồng.
B. 36080251 đồng.
C. 36080253 đồng.
D. 36080254 đồng.
Câu 40. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)
−n (2; 1; −4).
và có một véc tơ pháp tuyến là →
A. 2x + y − 4z + 1 = 0.
B. −2x − y + 4z − 8 = 0.
C. 2x + y − 4z + 7 = 0.
D. 2x + y − 4z + 5 = 0.
Câu 41. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x = 1 + 2t
x = −1 + 2t
x = 1 − 2t
x = 1 + 2t
y = −2 − 3t .
y = 2 + 3t .
y = −2 + 3t .
y = −2 + 3t .
A.
B.
C.
D.
z = 4 − 5t
z = −4 − 5t
z = 4 + 5t
z = 4 − 5t
r
3x + 1
Câu 42. Tìm tập xác định D của hàm số y = log2
x−1
A. D = (1; +∞).
B. D = (−1; 4) ———————————————– .
C. D = (−∞; 0).
D. D = (−∞; −1] ∪ (1; +∞).
Câu 43. Trong không gian với hệ trục tọa độ Oxyz, gọi (P)
√ là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
3 2
. Giả sử phương trình mặt phẳng (P) có dạng
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng
2
ax + by + cz + 2 = 0. Tính giá trị abc.
A. −4.
B. 4.
C. −2.
D. 2.
Câu 44. Hàm số y = x3 − 3x2 + 1 có giá trị cực đại là:
A. −3.
B. 4.
C. 2.
D. 1.
Câu 45. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
→
− (2; 3; −5).
qua điểm
A(1; −2; 4) và có một
véc tơ chỉ phương là u
x
=
1
+
2t
x
=
−1
+
2t
x
=
1
−
2t
x = 1 + 2t
y = −2 + 3t .
y = 2 + 3t .
y = −2 + 3t .
y = −2 − 3t .
A.
B.
C.
D.
z = 4 − 5t
z = −4 − 5t
z = 4 + 5t
z = 4 − 5t
Câu 46. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0. Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2 +MB2 +2MC 2
nhỏ nhất. Tính tổng a + b + c.
A. 2.
B. 3.
C. 4.
D. 1.
Câu 47. Tính thể tích của khối trịn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2 ,
trục Ox và hai đường thẳng x = −1; x = 2 quay quanh trục Ox.
33π
31π
32π
.
B. 6π.
C.
.
D.
.
A.
5
5
5
Câu 48. Cho m = log2 3; n = log5 2. Tính log2 2250 theo m, n.
3mn + n + 4
2mn + 2n + 3
A. log2 2250 =
.
B. log2 2250 =
.
n
m
2mn + n + 3
2mn + n + 2
C. log2 2250 =
.
D. log2 2250 =
.
n
n
π
cos x
Câu 49. Biết hàm F(x) là một nguyên hàm của hàm f (x) =
và F(− ) = π. Khi đó giá trị
sin x + 2 cos x
2
F(0) bằng:
Trang 4/4 Mã đề 001