Tài liệu Pdf miễn phí LATEX
ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001
Câu 1. Cho hình lập phương ABCD.A′ B′C ′ D′ . Tính góc giữa hai đường thẳng AC và BC ′ .
A. 360 .
B. 450 .
C. 600 .
D. 300 .
3
Câu 2. Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) và đáy
2
là đường trịn nằm hồn tồn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn
nhất.
√
√
√
2π
4 3π
A. 2 3π.
B. 4 3π.
C. √ .
D.
.
3
3
Câu 3. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log x > log y.
B. ln x > ln y.
C. log 1 x > log 1 y.
a
D. loga x > loga y.
a
Câu 4. Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + 5 = 0. Tọa độ của một véc
tơ pháp tuyến của (P) là
A. (2; −1; 2).
B. (−2; −1; 2).
C. (−2; 1; 2).
D. (2; −1; −2).
Câu 5.√ Bất đẳng thức
√ nào esau đây là đúng?
π
A. ( 3 + 1) > ( 3 + 1) .
C. 3−e > 2−e .
√
√
e
π
B. ( 3 − 1) < ( 3 − 1) .
D. 3π < 2π .
Câu 6. Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A. Đường parabol.
B. Đường tròn.
C. Đường hypebol.
D. Đường elip.
Câu 7. Cho 0 < a , 1; 0 < x , 2. Đẳng thức nào sau đây là sai?
A. aloga x = x.
B. loga x2 = 2loga x.
1
C. loga2 x = loga x.
D. loga (x − 2)2 = 2loga (x − 2).
2
Câu 8. Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (2; −3; −1).
B. M ′ (−2; 3; 1).
C. M ′ (2; 3; 1).
D. M ′ (−2; −3; −1).
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2). Tìm tọa độ
điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450 .
A. C(−3; 1; 1).
B. C(3; 7; 4).
C. C(1; 5; 3).
D. C(5; 9; 5).
Câu 10. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −3.
C. f (−1) = −1.
D. f (−1) = −5.
2x + 2017
(1). Mệnh đề nào dưới đây là đúng?
x
+ 1
A. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x = −1..
B. Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y = 2 và khơng có tiệm cận đứng.
C. Đồ thị hàm số (1) khơng có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x = −1, x = 1..
D. Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và khơng có tiệm cận
đứng.
Câu 11. Cho hàm số y =
Trang 1/4 Mã đề 001
Câu 12. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vng. Tính thể tích của khối trụ.
A. 3π.
B. 2π.
C. 4π.
D. π .
R
Câu R13. Biết f (u)du = F(u) + C Mệnh đề nào dưới đây
R đúng?
A. f (2x − 1)dx = 2F(x) − 1 + C.
B. f (2x − 1)dx = F(2x − 1) + C.
R
R
1
C. f (2x − 1)dx = 2F(2x − 1) + C.
D. f (2x − 1)dx = F(2x − 1) + C .
2
Câu 14. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
a
ln a
A. ln( ) =
.
B. ln(ab2 ) = ln a + 2 ln b.
b
ln b
C. ln(ab2 ) = ln a + (ln b)2 .
D. ln(ab) = ln a. ln b .
Câu 15. Tìm tất cả các giá trị của tham số m để hàm số y = mx − sin xđồng biến trên R.
A. m ≥ 0.
B. m ≥ −1.
C. m ≥ 1.
D. m > 1.
Câu 16. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. 0 < m < 2.
B. −2 ≤ m ≤ 2.
C. −2 < m < 2.
D. m = 2.
Câu 17. Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1). Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E.
A. (−2; 0; 0).
B. (0; 2; 0).
C. (0; −2; 0).
D. (0; 6; 0).
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1). Tìm tọa độ điểm M ′ đối xứng với M qua
mặt phẳng Oxz?
A. M ′ (−2; 3; 1).
B. M ′ (2; 3; 1).
C. M ′ (2; −3; −1).
D. M ′ (−2; −3; −1).
Câu 19.
Cho√ hai số thực a, bthỏa mãn a > b > 0. Kết luận nào
√
√
√5 sau đây là sai? − √3
√5
2
2
a
b
A. a > b .
B. e > e .
C. a < b.
D. a
< b− 3 .
Câu 20.
thức nào sau đây là đúng?
√ Bất đẳng
√
π
e
A. ( 3 + 1) > ( 3 + 1) .
C. 3π < 2π .
√
√
e
π
B. ( 3 − 1) < ( 3 − 1) .
D. 3−e > 2−e .
Câu 21. Cho a > 1; 0 < x < y. Bất đẳng thức nào sau đây là đúng?
A. log 1 x > log 1 y.
B. loga x > loga y.
C. log x > log y.
a
D. ln x > ln y.
a
Câu 22. √
Hàm số nào sau√đây đồng biến trên R?
A. y = x2 + x + 1 − x2 − x + 1.
C. y = x2 .
B. y = tan x.
D. y = x4 + 3x2 + 2.
Câu 23. Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ có cực tiểu mà khơng có
cực đại
A. m ≥ 1.
B. m ≤ 1.
C. m < 1.
D. m > 1.
Câu 24. Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3 + 6x2 + mx − 2 đi qua điểm (11;1)?
A. m = −15.
B. m = −2.
C. m = 13.
D. m = 3.
Câu 25. Một mặt cầu có diện tích bằng 4πR2 thì thể tích của khối cầu đó là
3
4
A. πR3 .
B. πR3 .
C. πR3 .
D. 4πR3 .
4
3
(2 ln x + 3)3
Câu 26. Họ nguyên hàm của hàm số f (x) =
là :
x
4
4
(2 ln x + 3)
2 ln x + 3
(2 ln x + 3)
A.
+ C.
B.
+ C.
C.
+ C.
2
8
8
(2 ln x + 3)2
D.
+ C.
2
Trang 2/4 Mã đề 001
Câu 27. Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x + 5, tiếp tuyến tại
A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C).
7
5
3
9
A. .
B. .
C. .
D. .
4
4
4
4
′ ′ ′
Câu 28. Lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc của A′ lên (ABC)
là trung điểm của BC. Góc giữa cạnh bên và mặt phẳng đáy là 600 . Khoảng cách từ C ′ đến mp (ABB′ A′ )
là
√
√
√
√
3a 13
3a 10
3a 13
a 3
A.
.
B.
.
C.
.
D.
.
26
20
13
2
Câu 29. Đồ thị như hình bên là đồ thị của hàm số nào?
2x + 2
2x − 1
2x + 1
−2x + 3
.
B. y =
.
C. y =
.
D. y =
.
A. y =
1−x
x+1
x−1
x+1
3 2
1
m
3