Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt 6 (800)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.15 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S√BC) bằng
√ với mặt đáy và S O = a.

a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 2. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.


C. 20.
D. 12.
2
ln x
m
Câu 3. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 4. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 5 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
8a3 3
4a3 3
a3 3
8a3 3

A.
.
B.
.
C.
.
D.
.
9
9
9
3
Câu 6. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 0.
D. 1.
a
1
Câu 7. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 1.
D. 7.
Câu 8. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
0 0 0 0
0
Câu 9. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
b a2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √

.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Z 2
ln(x + 1)
Câu 10. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. 3.
C. −3.
D. 1.
log2 240 log2 15
Câu 11. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
D. 3.
Câu 12. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

α+β
α β
C. aα bα = (ab)α .

D. aαβ = (aα )β .
A. a = a .a .
B. β = a β .
a
Câu 13. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
Trang 1/10 Mã đề 1


Câu 14. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 3.

C. 1.

D. 0.

Câu 15. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.

B. V = S h.
C. V = S h.
D. V = S h.
2
3
Câu 16. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 6
a3 5
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
1
Câu 17. [1] Giá trị của biểu thức log √3
bằng
10
1
1

D. − .
A. −3.
B. 3.
C. .
3
3
3
2
Câu 18. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−1; 3].
C. (−∞; −3].
D. [−3; 1].
Câu 19. Giá trị của lim(2x2 − 3x + 1) là
A. +∞.

x→1

B. 1.

C. 0.

Câu 20. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

A. 5.
B. 5.
C. 25.


Câu 21. √
Thể tích của khối lập phương có cạnh bằng a 2

2a3 2
A.
.
B. 2a3 2.
C. V = 2a3 .
3
Câu 22. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.

D. 2.

log √a 5

D.

1
.
5


D. V = a3 2.
D. −7, 2.

Câu 23. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
log2 a
loga 2
3

Câu 24. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e5 .
C. e.
2
x − 3x + 3
Câu 25. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.
C. x = 3.
cos n + sin n
Câu 26. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 1.


D. e2 .
D. x = 0.
D. 0.

Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
4a3 3
a3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Trang 2/10 Mã đề 1


Câu 28. Dãy số
!n nào có giới hạn bằng3 0?
!n
−2
6

n − 3n
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
3
n+1
5
1
Câu 29. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 30.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z

B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Câu 31. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. +∞.

Câu 32. [1] Tập xác định của hàm số y = 4
A. D = [2; 1].
B. D = R.

C. −∞.
x2 +x−2

un

bằng
vn
D. 0.


C. D = (−2; 1).

D. D = R \ {1; 2}.

Câu 33. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
6
2
3
Câu 34. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.

B. Có một.
C. Có hai.
D. Có một hoặc hai.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 35. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng √
AB có độ dài bằng
√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 6.
D. 2.
Câu 36. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.

D. x = −5.

Câu 37. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.

t
9
Câu 38. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.
Câu 39. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.
Câu 40. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Trang 3/10 Mã đề 1


Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3

a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 42. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 5%.
D. 0, 6%.
Câu 43. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
Câu 44. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
log 2x


x2
1
1 − 4 ln 2x
B. y0 = 3
.
C. y0 =
.
2x ln 10
2x3 ln 10

D. 1.

Câu 45. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 2 log 2x
.
x3

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

1

Câu 46. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).

B. D = R \ {1}.
C. D = R.

D. D = (1; +∞).

3
2
Câu 47. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

B. −3 + 4 2.
C. 3 + 4 2.
A. −3 − 4 2.


D. 3 − 4 2.

Câu 48. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 49. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x

C. y0 =


1
.
ln 2

D. y0 = 2 x . ln x.

Câu 50. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(4; 8).
Câu 51. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Giảm đi n lần.
Câu 52. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.

B.
.
C.
.
D.
.
4
12
6
12
Câu 53. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 2.

D. 4.
Trang 4/10 Mã đề 1


Câu 54.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z

C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Z
B.
Z
D.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.


Câu 55. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .

C. −3.
D. .
3
3
Câu 56. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 8, 16, 32.
C. 2, 4, 8.
D. 6, 12, 24.
Câu 57. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 58. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 59. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.

q
2
Câu 60. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 61. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
1
Câu 62. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
Câu 63. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 64. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng

lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 65. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 66. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
!
x+1
. Tính tổng S = f 0 (1) +
Câu 67. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.
B.
.
C.

.
2018
2018
2017
Câu 68. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều.
2

D. 12.
f 0 (2) + · · · + f 0 (2017)
D. 2017.
D. Tứ diện đều.
2

Câu 69. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
Trang 5/10 Mã đề 1


d = 120◦ .
Câu 70. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

.
C. 3a.
D. 4a.
A. 2a.
B.
2
Câu 71. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 72. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 1.
C. 2.
2

D.

ln 2
.
2

x2
Câu 73. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .

B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = 0.
e
e
5
Câu 74. Tính lim
n+3
A. 2.
B. 0.
C. 1.
D. 3.
Câu 75. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 76. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.


B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 77. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 1.
B. 3.
C. .
D. .
2
2
Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 79. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 6 mặt.
D. 4 mặt.
!
5 − 12x
Câu 80. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8

A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 81. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.
Trang 6/10 Mã đề 1


Câu 82. [1] Đạo hàm của làm số y = log x là
1
1
.
B. y0 = .
A.
10 ln x
x

C. y0 =

1
.
x ln 10

D. y0 =


ln 10
.
x

[ = 60◦ , S A ⊥ (ABCD).
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 3
a3 2
a3 2
3
A.
.
B. a 3.
.
D.
.
C.
6
12
4
Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.

Câu 85. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

C. 3.

D. +∞.

Câu 86. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 16.
D. 8 3.
A. 7 3.
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. 6.

C. .
D. 9.
A. .
2
2
Câu 89. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
x+3
Câu 90. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Câu 92. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng




20 3
14 3
A.
.
B.
.
C. 8 3.
D. 6 3.
3
3
12 + 22 + · · · + n2
Câu 93. [3-1133d] Tính lim
n3
2
A. .
B. 0.
3

C.

1
.
3

D. +∞.

Câu 94. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?

A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Trang 7/10 Mã đề 1


Câu 95.

[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].

C. m ∈ [0; 1].

q
x+ log23 x + 1+4m−1 =

D. m ∈ [−1; 0].

Câu 96. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
10

40
20
20
C50
.(3)40
C50
C50
C50
.(3)10
.(3)30
.(3)20
A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 97. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.

D. 11 năm.
1
Câu 98. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 99. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.

D. Hình lăng trụ.

Câu 100. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
1
2
9
A. .
B.
.
C. .
D.
.
5
10
5

10
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 101. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 102. Trong các khẳng định sau, khẳng định nào sai?

A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 103. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.

B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 104. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
2

Câu 105. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.
B. 5.
C. 6.

D. 7.

Câu 106. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).

B. lim

1
= 0.
n
Trang 8/10 Mã đề 1


C. lim un = c (un = c là hằng số).
4x + 1

bằng?
x→−∞ x + 1
B. −1.

D. lim

1
= 0.
nk

Câu 107. [1] Tính lim
A. −4.

C. 2.

D. 4.

Câu 108. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9
A.
.
B. − .
C. −
.
D.
.

100
16
100
25
Câu 109. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
(1, 01) − 1
3
!
!
!
1

2
2016
4x
Câu 110. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
A. T =
2017
Câu 111. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.
D. m < 0.



x = 1 + 3t





Câu 112. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 7t
x
=
−1
+
2t
x
=

1
+
3t
x
=
−1
+
2t
















.
C. 
A. 
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t . B. 

y = 1 + 4t .
















z = 1 + 5t
z = −6 − 5t
z = 1 − 5t
z = 6 − 5t
x2 − 5x + 6
x→2
x−2
B. −1.

Câu 113. Tính giới hạn lim
A. 0.

C. 5.


Câu 114. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.

D. 1.
D. Ba mặt.

Câu 115. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a


3
a 15
a
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
5
3
25

25
x+1
Câu 116. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 1.
B. 3.
C. .
D. .
4
3
Trang 9/10 Mã đề 1


x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
π
Câu 118. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá

3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 4.
Câu 117. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

2

Câu 119. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B. 2 .
C. √ .
A. 3 .
2e
e
2 e

D.

2
.
e3


Câu 120.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 9.
D. 8.
x+2
bằng?
Câu 121. Tính lim
x→2
x
A. 0.
B. 1.
C. 2.
D. 3.
Câu 122. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Một mặt.

Câu 123. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 124. Khối lập phương thuộc loại

A. {3; 4}.
B. {4; 3}.

D. {5; 3}.

C. {3; 3}.

Câu 125. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 126.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z

Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 127.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

B.

1
dx = ln |x| + C, C là hằng số.
x

Z
D.

dx = x + C, C là hằng số.
xα dx =

xα+1

+ C, C là hằng số.
α+1

Câu 128. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.
C. .
D. .
2
2
3
Câu 129. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a


Câu 130. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2.

B
D

3. A

4.

5. A

6.

C

8.

C


10.

C

D

7.
9.

B

11. A

12.

13. A

14. A

15.

16. A

C

17.

18.


D

19.

C
B

22.

23.

B

24.

25. A

26.

27. A

28. A

C
D
B
D

30.


B

31.

D

32.

33. A

34.

35. A

36. A

37.

D

38. A

39.

D

40. A

41. A
43.


D

20.

21.

29.

B

42.
B

45.

D

D
B
D

B

44.

D

46.


D

47.

B

48.

D

49.

B

50.

D

51.
53.

D
B

52.

B

54.


B

55.

D

56.

58.

D

59.

B

61.

B

60.

B

62.

63. A

C


64. A
66.

D

B

68. A

65.

B

67.

B

69.
1

C


70.
72.
74.

B
C
B


80. A
82.

B
D

73.

C

76.
78.

71.

B

C

84. A

75.

C

77.

C


79.

C

81.

D

83.

D

85. A
D

86.
88. A
90.

D
D

98.

C
D

D

C


95.

D

97.

D

99.

C

100.

89.
93.

94. A
96.

C

91.

C

92.

87.


B

101. A

102. A

103.

104. A

105.

D

106. A

107.

D

108.
110.

C

109.

B


114.

113.
D

116.

C

111. A
C

112.

C

115.

C

118.

B
D

117.
D

119.


C
B

120. A

121.

C

122. A

123.

C

124.

B

126.

C

128.

B

130.

B


125.

D

127.

D

129. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×