Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (154)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.12 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

3a
, hình chiếu vng góc
2
của S trên
√ mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a 2
2a
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
1 + 2 + ··· + n
Câu 2. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?


n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
D. lim un = 1.
C. lim un = .
2
Câu 3. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
A. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2


4n2 + 1 − n + 2
bằng

Câu 4. Tính lim
2n − 3
3
A. +∞.
B. 1.
C. 2.
D. .
2
Câu 5. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
B. lim qn = 1 với |q| > 1.
1
1
C. lim √ = 0.
D. lim k = 0 với k > 1.
n
n
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 6. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.

D. m = −1.

Câu 7. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số nghịch biến trên khoảng (−∞; 0).

D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 8. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = 1.
D. f 0 (0) = 10.
A. f 0 (0) = ln 10.
B. f 0 (0) =
ln 10
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 9. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 10. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .

C. k = .
D. k = .
15
9
18
6
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
16
48
48
Câu 12. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 8 mặt.
B. 9 mặt.
C. 7 mặt.
D. 6 mặt.
Trang 1/10 Mã đề 1


Câu 13. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 14. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
Câu 15. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
Câu 16. [1] Tập xác định của hàm số y = 4
A. D = R \ {1; 2}.
B. D = (−2; 1).

x2 +x−2

D. 2.



C. D = [2; 1].

D. D = R.

Câu 17. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 18. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
B. −∞; − .
C. − ; +∞ .
A. −∞; .
2
2
2

!
1
; +∞ .
D.
2

Câu 19. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
.
C. log2 a = loga 2.
D. log2 a =
.
A. log2 a = − loga 2.
B. log2 a =
log2 a
loga 2
Câu 20. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
12 + 22 + · · · + n2
n3
1
B. .
3

Câu 21. [3-1133d] Tính lim
A. +∞.
Z
Câu 22. Cho
A.

1
.
4


C.

2
.
3

D. 0.

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

B.

1
.
2

C. 0.

D. 1.

Câu 23. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a


x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).




x = 1 + 3t




Câu 24. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = 1 + 7t
x = −1 + 2t
x = −1 + 2t
x = 1 + 3t

















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
z = 1 − 5t
Trang 2/10 Mã đề 1


Câu 25. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 18.
D. 12.
2
Câu 26. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

1 − n2
bằng?
2n2 + 1

1
1
1
C. .
D. − .
A. 0.
B. .
3
2
2
Câu 28. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


a3 2
a 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12

4
6
Câu 27. [1] Tính lim

Câu 29. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
Câu 30. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 3.

C. 0.

D. −∞.

Câu 31. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 32. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 4 mặt.
B. 6 mặt.
C. 5 mặt.

D. 3 mặt.

Câu 33. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (II).
Trang 3/10 Mã đề 1






x=t




Câu 35. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2

2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
x
Câu 36. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 13.
D. log2 2020.
0 0 0 0
0
Câu 37.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7

2
3
Câu 38. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.
D. Hình lập phương.
log 2x
Câu 39. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
A. y0 = 3
.
D. y0 =
3
x ln 10
2x ln 10
x
2x3 ln 10
Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và

AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
4
2
1
Câu 41. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.
D. D = R \ {1}.

Câu 42. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.
0

0

D. e.

0

Câu 43. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 44. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
cos n + sin n
Câu 45. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.

D. +∞.

Câu 46. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim

= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 4/10 Mã đề 1


Câu 47. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.

D. 2.

Câu 48. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. [6, 5; +∞).

Câu 49. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .

D. 160 cm2 .
Câu 50. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 51. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −3.
−2x2

Câu 52. [2-c] Giá trị lớn nhất của hàm số y = xe
1
2
B. 2 .
A. 3 .
e
e

trên đoạn [1; 2] là
1
C. 3 .
2e

D. −5.
D.


1
√ .
2 e

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
! x3 −3mx2 +m
1
Câu 54. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m , 0.
D. m ∈ R.
Câu 53. [3-12217d] Cho hàm số y = ln

Câu 55. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.

B. 10.

C. 8.

D. 12.

Câu 56. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24

6
12
Câu 58. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.
C. 20.
D. 8.
2n + 1
Câu 59. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 0.
D. 1.

Câu 60. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =

.
D. V =
.
6
6
2
3
Trang 5/10 Mã đề 1


Câu 61. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
24
12
36
6
x−2 x−1
x
x+1
Câu 62. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1

ab
.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 64. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B.
.
C. 8 3.
D. 6 3.
3

3

Câu 65. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
3
12
Câu 66. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 67. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 3.
D. m = ± 2.

Câu 68. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 2.
C. 3.

D. 1.

Câu 69. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m > 0.

D. m ≥ 0.

Câu 70. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. 6.

C. −1.

Z

6

3

3x + 1


. Tính

1

f (x)dx.
0

D. 2.

Câu 71. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 6/10 Mã đề 1


Câu 73. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.

D. 102.016.000.
2n − 3
bằng
Câu 74. Tính lim 2
2n + 3n + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
1
Câu 75. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 1.
D. 3.
Câu 76. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

D. {4; 3}.

Câu 77. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD



3
3
a 3
a 3
a3
.
C.
.
D.
.
B.
A. a3 .
3
9
3
Câu 78. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 79. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).
Câu 80. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 81. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A.
.
B. 2017.
C.
.

D.
.
2018
2017
2018
Câu 83. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 68.
C. 34.
D. 5.
17
Câu 84. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Trang 7/10 Mã đề 1


1
Câu 85. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.

A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.
Câu 86. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
3

Câu 87. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.

D. e3 .

Câu 88. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 89. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a

a
B.
.
C. .
D. a.
A. .
3
2
2
d = 120◦ .
Câu 90. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.
B. 2a.
C. 4a.
D.
2
Câu 91. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).
C. (−∞; 0) và (2; +∞). D. (−∞; 2).
x+1
Câu 92. Tính lim
bằng
x→−∞ 6x − 2
1
1
1

B. .
C. .
D. 1.
A. .
2
6
3
Câu 93. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 94. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

D. |z| =

√4
5.

Câu 95. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. Vô nghiệm.
D. 1.
Câu 96. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).

B. D = R \ {1}.

C. D = R \ {0}.

D. D = R.

Câu 97. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 98. Khối đa diện đều loại {4; 3} có số cạnh

A. 12.
B. 20.
C. 30.
D. 10.
Câu 99. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Trang 8/10 Mã đề 1


Câu 100. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 101. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (0; 1).
D. (−∞; 0) và (1; +∞).
Câu 102. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.


C. Khơng có câu nào D. Câu (III) sai.
sai.

Câu 103. Xét hai câu sau
Z
Z
Z
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
(I)
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
Câu 104. Tính lim

x→+∞

A. 1.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

B. −3.

2
D. − .

3

x−2
x+3
C. 2.

Câu 105. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − .
D. −e.
A. − 2 .
e
2e
e
Câu 106.
Cho hàm số f (x),
mệnh đề nào sai?
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, Z
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. 1.
D. Vô số.
Câu 107. [4] Xét hàm số f (t) =

Câu 108. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.

C. Hai mặt.

D. Ba mặt.

Câu 109. Khối lập phương thuộc loại
A. {3; 3}.
B. {5; 3}.

D. {4; 3}.

C. {3; 4}.

Câu 110. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 91cm3 .
D. 84cm3 .
Trang 9/10 Mã đề 1


Câu 111. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 8.
C. 3.
D. 6.
Câu 112. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.

C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 113. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
C. .
D. 2.
A. 1.
B.
2
2
Câu 114. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
2a 3
a 3
5a3 3
4a3 3
A.
.
B.
.
C.
.
D.

.
3
2
3
3
Câu 115. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
A. y0 = x
2 . ln x
ln 2
Câu 116. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 117. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.

D. 12 m.
Câu 118. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
x
Câu 119. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe , y = 0, x = 1.

3
3
1
A. .
B.
.
C. .
D. 1.
2
2
2
Câu 120. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
D. Một mặt.
Z 3
x
a
a
Câu 121. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 28.
C. P = 4.
D. P = −2.
log 2x
Câu 122. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =

.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
tan x + m
Câu 123. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
Trang 10/10 Mã đề 1


A. (−∞; 0] ∪ (1; +∞).

B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).

D. (1; +∞).

Câu 124. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4

đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.

D.
=
=
.
2
3
4
2
2
2

Câu 125. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 25.
D. .
A. 5.
B. 5.
5
Câu 126. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối 12 mặt đều.
Câu 127. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. 0, 8.
2−n
bằng
Câu 128. Giá trị của giới hạn lim

n+1
A. −1.
B. 1.
C. 0.

D. −7, 2.

D. 2.

Câu 129. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

67
.
27
Câu 130. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
A. −7.

B. −2.

C. −4.

D.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.

B

5.

B

6.

B

7.

D


8. A

9.

B

11.

12.

B

13.

14. A

D
B

15. A

16.

D

18.

17.


D

21.

D
B

23.

B

24.

B

19.

C

20.
22.

C

C

26.

D


25.
D

C

27.

D

28.

B

29. A

30.

B

31.

B

33.

B

35.

B


32. A
D

34.
36.

C

37.

38.

C

39. A

40.

41. A

B

42.

43.

D

44.


C

D

45. A

46. A
48.

D

C

50. A

47.

B

49.

B

51.

B

52.


B

53.

54.

B

55.

D

57.

D

56.
58.

D
B

60.

C

59. A
D

61.


62. A

B

63. A

64.

D

65.

66.

B

67.

68.

B

69. A
1

B
D



70. A

71. A

72. A

73.

74. A

75.

B
C

76.

B

77.

D

78.

B

79.

D


80.

81.

C

82.

D

83. A

84.

B

85.

86.

B

87.

88.

B

89.

D

90.
92.

C
C
B
D

91.

B

C

93. A

94.

D

95.

D

96.

D


97.

D

98. A

99.

C

100.

C

101.

B

102.

C

103.

B

105.

B


107.

B

104. A
106.

C

108.
110.

109.

D
B

111.

B

116.

C

119.

120.

B


121.

122.

C

117. A

B
D

D
C

123.

124. A

D

125.

C

127.

B

128. A

130.

D

115.

118.

126.

C

113.

112. A
114.

D

129.
C

2

D
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×