Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (47)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.04 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1

Câu 1. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = R \ {1}.
Câu 2. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

sin n
.
n

D. D = (1; +∞).
D.


n+1
.
n

Câu 3. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. 3.

D. +∞.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

π
Câu 4. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.

Câu 5. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

Câu 6. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
23
5
9
.
B.
.
C. −
.
D. − .
A.
25
100
100
16
Câu 7. [1] Tập! xác định của hàm số y != log3 (2x + 1) là
!
!
1
1
1
1
A. −∞; − .
; +∞ .

B. −∞; .
C.
D. − ; +∞ .
2
2
2
2
Câu 8. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3

. Khi đó thể tích khối lăng trụ là
4 √



a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

24
6
12
36
3

Câu 9. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
Câu 10. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
x2 − 5x + 6
Câu 11. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
C. 0.

D. e5 .
D. m > −1.

D. −1.

Câu 12. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 13.

đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
B.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 1/10 Mã đề 1


Z
D.

[ f (x) − g(x)]dx =

Z

Z
f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 15. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 14. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 16. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
2
3
6

Câu 17. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.

C.
.
D.
.
A.
6
18
36
6
Câu 18. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 19. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 20. Tìm m để hàm số y =
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Câu 21. Khối đa diện đều loại {4; 3} có số đỉnh

A. 6.
B. 8.
Câu 22. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2
n2

C. 10.
C. un =

D. 4.
n2 + n + 1
.
(n + 1)2

Câu 23. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =

.
C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 24. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Năm cạnh.

D. un =

1 − 2n
.
5n + n2

D. m =

1 + 2e
.
4 − 2e

D. Hai cạnh.

Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là

3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Câu 26. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4

4
Câu 27. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
D. − < m < 0.
4
4
Trang 2/10 Mã đề 1


Câu 28. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
x+2
đồng biến trên khoảng
Câu 29. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 30. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B

thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
.
C. 2a 2.
D.
.
A. a 2.
2
4
Câu 31. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m = 0.
D. m , 0.
3a
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a
a

A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 33. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 8π.
C. 16π.
D. 32π.
Câu 34. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 10.

Câu 35. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 20.

D. 3, 55.
Câu 36. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B. 2 13.
C.
.
D. 26.
A. 2.
13
x
Câu 37. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 2.
D. 3.

2
Câu 38. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
0 0 0
d = 300 .

Câu 39. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √

a3 3
3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
x+2
Câu 41. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 3.
D. 0.
Trang 3/10 Mã đề 1



Câu 42. Tính giới hạn lim
A.

3
.
2

2n + 1
3n + 2
1
B. .
2

C. 0.

D.

2
.
3

x2
Câu 43. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = , m = 0.
D. M = e, m = 1.
A. M = e, m = 0.

B. M = e, m = .
e
e
Câu 44.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 1.
D. 2.
Câu 45. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 2.
C. 1.
A. .
2
Z 2
ln(x + 1)
Câu 46. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.

D.

ln 2
.
2


D. 0.

Câu 47. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
3
2
Câu 48. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 5 mặt.

Câu 49. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. (−∞; −3].
D. [1; +∞).
Câu 50. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?

x→+∞

A. lim [ f (x) − g(x)] = a − b.

x→+∞

x→+∞

C. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 51. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim

x→+∞

C. 30.

f (x) a
= .
g(x) b
D. 12.

Câu 52. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần

lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
7
8
5
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 53. [1] Tính lim
2
A. − .
3

1 − 2n
bằng?
3n + 1
2
B. .
3

C. 1.


D.

1
.
3

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.

Câu 54. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Trang 4/10 Mã đề 1


Câu 55. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.

Câu 56. Dãy số nào có giới hạn bằng 0?
n3 − 3n
.
B. un = n2 − 4n.
A. un =
n+1

!n
6
C. un =
.
5

!n
−2
D. un =
.
3

Câu 57. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
ln 2
2 . ln x

C. y0 = 2 x . ln 2.

D. y0 = 2 x . ln x.
 π
x
Câu 58. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
e .
B. e .
C.
e .
D. 1.
A.
2
2
2
1
Câu 59. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 60. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = −2.


D. m = 0.

Câu 61. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
2a
4a
2a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√3
4
Câu 62. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng

7
5
2
5
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
Câu 63. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối


√ chóp S .ABCD là
3

a3 5
a3 6
a 15
3
.
C.
.
D.
.
A. a 6.
B.
3
3
3
[ = 60◦ , S A ⊥ (ABCD).

Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là

√ S C là a. Thể tích khối
3
3

a 3
a 2
a3 2
3
A. a 3.
B.
.
C.
.
D.
.
6
12
4
Câu 65. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 66. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (II) sai.
D. Câu (I) sai.
sai.
1
Câu 67. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Trang 5/10 Mã đề 1


Câu 68. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
2n − 3
bằng
Câu 69. Tính lim 2
2n + 3n + 1
A. +∞.
B. 0.

C. 4.


D. 24.

C. 1.

D. −∞.

Câu 70.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 71. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
!2x−1
!2−x
3
3


Câu 72. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).
D. [1; +∞).
!
1
1
1
Câu 73. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5

3
B. 2.
C. +∞.
D. .
A. .
2
2
Câu 74. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 5.
C. 3.
D. 4.
Câu 75. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. 9.
D. .
2
2
2
Câu 76. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 12.
D. ln 14.
x−2 x−1
x

x+1
Câu 77. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Câu 78. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.
C. 24.
D. 21.
Câu 79. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 6.
D. 5.

Câu 80. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. 63.
B. 62.
C. Vơ số.
D. 64.


Câu 81.
√ Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
A. 3 2.
B. 2 3.
C. 2 + 3.
D. 3.
2

Trang 6/10 Mã đề 1


Câu 82. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. −3.
Câu 83. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 0.

B. −∞.

Câu 84. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.


C. +∞.

D. Khơng tồn tại.
un
bằng
vn
D. 1.

C. 10.

D. 12.

Câu 85. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.

D. 2.
0

0

0

Câu 86. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).

Câu 87. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 88. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 89. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
2

Câu 90. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 1 − log3 2.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 91. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α


D. aαβ = (aα )β .
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
a
Câu 92. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
1
Câu 93. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 94. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là −4.
D. Phần thực là −1, phần ảo là 4.
Câu 95. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
√3

Câu 96. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
Trang 7/10 Mã đề 1


Câu 97. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
8
Câu 98. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2

x
A. 64.
B. 82.
C. 81.
D. 96.
Câu 99. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
Câu 100. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.

D. {3; 5}.

Câu 101. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là


3
3

a
a3 3
2a
3

3
.
B. a3 3.
.
D.
.
A.
C.
3
3
6
Câu 102. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 103. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.

D. 0, 8.

Câu 104. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z

Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 105. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

1
= 0.
nk
D. lim un = c (un = c là hằng số).

B. lim

Câu 106. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).

B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].

Câu 107. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
Câu 108. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.
Câu 109. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.

D. y0 = 1 + ln x.
Trang 8/10 Mã đề 1


Câu 110. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích

hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 4.
D. 0, 3.
Câu 111. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2
Câu 112. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 12 cạnh.

Câu 113. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − .
2e
e

D. V = S h.
D. 11 cạnh.


D. −

1
.
e2

2

Câu 114. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 3.
C. 4.
2
2
2
1 + 2 + ··· + n
Câu 115. [3-1133d] Tính lim
n3
2
A. +∞.
B. 0.
C. .
3

D. 5.

D.

1

.
3

Câu 116. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 117. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.

C. 6.

Câu 118. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e.
C. 2e + 1.
A. .
e

D. 10.

D. 3.

Câu 119. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3

!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 120. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
Z 3
x
a
a
Câu 121. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = −2.
D. P = 4.
!

5 − 12x
Câu 122. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
1
Câu 123. [1] Giá trị của biểu thức log √3
bằng
10
1
A. .
B. 3.
3

C. −3.

1
D. − .
3

C. 0.

D. +∞.

Câu 124. Giá trị của lim(2x2 − 3x + 1) là
x→1


A. 1.

B. 2.

Trang 9/10 Mã đề 1


Câu 125. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim
vn


Câu 126. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Z 1
Câu 127. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 1.

C.

1
.
4

D. 0.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.

C. 0.
D. 2.
x−1
Câu 129. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
Câu 128. [4] Xét hàm số f (t) =

Câu 130. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.
3.

D

2.

B

5.

C

4.

C

6.

C
C

7.

D

8.

9.


D

10.

11.

D

12.

13. A
B

D
B

20.

B

22.

B

24. A

25. A

26. A
C


27.

C

18.

23. A

29.

B

16.

C

19. A
21.

D

14.

15.
17.

D

B


31.

D

28.

B

30.

B

32.

B

34.

C

35. A

36.

C

37.

38. A


D

B
C

39.

40.

41. A

C

42.

D

43. A

44.

D

45.

B

47.


B

46.
48.

C
B

49. A

50.

D

51.

52.

B

53. A

54.

B

55.

56.


D

B
B

57.

C

58.

C

59.

B

60.

C

61.

B

62.

D

63.


64.

D

65.

66. A

67. A

68. A

69.
1

D
B
B


71.

70. A

D

72.

D


73.

74.

D

75.

D

76.

D

77.

D

78. A
80.

79.
B

B

B

81. A


82.

D

83. A

84.

D

85.

B

87.

B

86.

B

88.

C

89. A

90.


C

91.

92. A

93.

94. A

95.
D

96.
98.

C

100.

D

102.
104.

C
D
B


97.

C

99.

C

101. A

C

103.

B

B

105.

C
C

106.

D

107.

108.


D

109.

110.

D

111.

B

113.

B

112. A
114.

C

115.

116.

C

117.


D

D
C

118.

D

119.

D

120.

D

121.

D

122.

D

123.

D

125.


D

124.
126.

C
B

127. A

128.
130.

D

129.

C

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×