Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (655)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.75 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 1. Tìm m để hàm số y =
x+m
A. 34.
B. 67.
C. 45.

D. 26.

Câu 2. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 3. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng cách từ A đến mặt phẳng√(BCD) bằng



a 2


a 2
A. 2a 2.
.
C.
.
D. a 2.
B.
4
2
x
Câu 4. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 =
.
B. y0 = 2 x . ln 2.
C. y0 = 2 x . ln x.
D. y0 = x
.
ln 2
2 . ln x
Câu 5. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.

C.
.
D.
.
c+2
c+3
c+1
c+2
Câu 6. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.
C. +∞.
D. 1.
Câu 7. Cho hàm số y = x3 − 2x2 + x + 1.!Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 8. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.

B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
1
Câu 9. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 10. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x3 − 3x.
B. y = x + .
C. y =
.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 11. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 15
a3 5
a3 6
3
A.

.
B.
.
C. a 6.
D.
.
3
3
3
1
Câu 12. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Trang 1/10 Mã đề 1


Câu 13. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
1 + 2 + ··· + n

. Mệnh đề nào sau đây đúng?
Câu 14. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
B. lim un = 0.
A. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 15. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 16. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
Câu 17. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−∞; −1) và (0; +∞).



x = 1 + 3t





Câu 18. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 3t
x
=
−1
+
2t
x
=

−1
+
2t
x
=
1
+
7t
















.
B. 
A. 
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t . C. 

y=1+t
















z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
d = 300 .
Câu 19. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3

B. V =
.
C. V = 6a .
D. V =
.
A. V = 3a 3.
2
2
Câu 20. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞

Câu 21. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3
a 3

a3 3
A.
.
B.
.
C. a3 3.
D.
.
12
3
4
Câu 22. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B.
.
C.
.
D. a 3.
2
3
−2x2
Câu 23. [2-c] Giá trị lớn nhất của hàm số y = xe
trên đoạn [1; 2] là

1
2
1
1
A. 2 .
B. 3 .
C. 3 .
D. √ .
e
e
2e
2 e
Trang 2/10 Mã đề 1


Câu 24. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 25. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.

C. .
2
2
Câu 26. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều. D. Khối tứ diện đều.
Câu 27. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 28. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.

B. 1.
C. 3.
D. Vô nghiệm.
Câu 29. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 30. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 0.

D. Khối tứ diện đều.
D. 13.

Câu 31. [3-1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
x

Câu 32. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
2−n
bằng

Câu 33. Giá trị của giới hạn lim
n+1
A. −1.
B. 2.

C. 4.

D. 2.

C. 1.

D. 0.

Câu 34. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (1; +∞).
3

D. (−∞; 1).

Câu 35. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = −18.
Z 1
6
2

3
. Tính
f (x)dx.
Câu 36. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. −1.

B. 2.

C. 4.

D. 6.

Câu 37. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 4.

D. 3.
Trang 3/10 Mã đề 1


Câu 38. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng

1
1
1
A. .
B. 4.
C. .
D. .
4
2
8
Câu 39. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
n3 − 3n
2
A. un =
.
B. un = n − 4n.
C. un =
.
D. un =
.
3
5
n+1

Câu 40. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể

theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
Câu 41. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Câu 42. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là

20
40
20
10
.(3)30
.(3)10
.(3)20
C50
C50
C50
C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450
450
450
1 − 2n
Câu 43. [1] Tính lim
bằng?
3n + 1
2
1

2
A. .
B. .
C. 1.
D. − .
3
3
3
2mx + 1
1
Câu 44. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −5.
D. −2.




Câu 45. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. 0 < m ≤ .

4
4
4
Câu 46. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
2

2

2

Câu 47. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.

B. 7.
C. 8.
log2 240 log2 15
Câu 48. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
3
2
Câu 49. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.

D. 6.

D. 1.

D. −3 + 4 2.

Câu 50. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
3
6
2
x+2
Câu 51. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
Trang 4/10 Mã đề 1


Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng




c a2 + b2
b a2 + c2
a b2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x−1 y z+1
Câu 53. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.

!
3n + 2
2
Câu 54. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Câu 55. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m > − .
D. m ≥ 0.
A. − < m < 0.
4
4
Câu 56. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 57. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.


B. 2.

C. +∞.

D. 1.

Câu 58. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).


Câu 59. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Câu 60. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 61. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = 0.

D. m = −3.


Câu 62. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 63. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Trang 5/10 Mã đề 1


7n2 − 2n3 + 1
Câu 64. Tính lim 3
3n + 2n2 + 1
2
7
B. 1.
C. 0.
D. - .
A. .
3
3
Câu 65. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 66. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng

ab
1
1
ab
.
B. 2
.
D.
.
.
C.
A. √


a + b2
a2 + b2
2 a2 + b2
a2 + b2
x−3
Câu 67. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 0.
C. 1.
D. −∞.
2n + 1
Câu 68. Tính giới hạn lim
3n + 2
3

2
1
A. 0.
B. .
C. .
D. .
2
3
2
x
x
x
Câu 69. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 1.
B. 0.
C. 2.
D. 3.
1
Câu 70. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. −3.
C. .
D. 3.
A. − .
3
3
Câu 71. Khối đa diện đều loại {5; 3} có số mặt

A. 30.
B. 20.
C. 8.
D. 12.
x
9
Câu 72. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. 1.
D. .
2
x+3
Câu 73. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 74. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −5.
C. 6.
2


D. −6.

Câu 75. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

Câu 76. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có một.
D. Có vơ số.
Câu 77. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
A. 27.
B. 8.
C. 3 3.
D. 9.
Câu 78. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
4a 3
a 3
8a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
Trang 6/10 Mã đề 1


Câu 79. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.

B. 8.

C. 20.

D. 30.

Câu 80. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).
B. (1; 2).
C.
2
2
cos n + sin n
Câu 81. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 1.
D. 0.



ab.

Câu 82. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3

3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
Câu 84. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

a3 6
2a 6
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
12
9
2
4

Câu 85. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
Câu 86. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = (0; +∞).
B. D = R \ {1}.
x−2
Câu 87. Tính lim
x→+∞ x + 3
A. −3.
B. 1.

C. D = R.

D. D = R \ {0}.


2
D. − .
3
Câu 88. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. a.
B. .
C.
.
D. .
2
2
3
C. 2.

1

Câu 89. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).

D. D = (−∞; 1).

Câu 90. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).

A. 24 m.
B. 12 m.
C. 16 m.
D. 8 m.
2
1−n
Câu 91. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. 0.
B. .
C. − .
D. .
3
2
2
2

Trang 7/10 Mã đề 1


Câu 92. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 2.
B.
.
C. 1.

2

D.

1
.
2

x2
Câu 93. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 94. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.


4n2 + 1 − n + 2
Câu 95. Tính lim
bằng

2n − 3
3
C. +∞.
D. 1.
A. 2.
B. .
2
2n + 1
Câu 96. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 0.
D. 1.
Câu 97. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.


Câu 98. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 1.

C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 99. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 2400 m.
D. 1134 m.
un
Câu 100. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 101. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm

1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
1
Câu 102. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 103. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Trang 8/10 Mã đề 1


Câu 104.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|

A. 3.
B. 1.
C. 2.
D. 5.
tan x + m
nghịch biến trên khoảng
Câu 105. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 106. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 18.
C.
.
D. 12.
2
Câu 107. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 108. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.

B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 109. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
4a 3
2a
2a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 110. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào

dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
Câu 111. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 3}.

D. {5; 3}.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.

Câu 112. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 113. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m < 0.
x − 12x + 35

25 − 5x
B. −∞.

D. m = 0.

2

Câu 114. Tính lim
x→5

2
A. − .
5
Câu 115.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
5
1
A.
.
B.
.
3
3

2
.
5


D. +∞.

!n
5
C. − .
3

!n
4
D.
.
e

Câu 116.
Các khẳng định nào Z
sau đây là sai?
Z

Z

f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

C.


f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.

Z

Z

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Trang 9/10 Mã đề 1


Câu 117. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là

2
11a2
a2 7
a2 2
a 5
.
B.
.

C.
.
D.
.
A.
16
32
8
4
Câu 118. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 119. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.
log23

q
x + log23 x + 1 + 4m −

Câu 120. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].

Câu 121. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
1
Câu 122. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 123. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 124. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = R \ {1; 2}.
2

D. D = (−2; 1).

Câu 125. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
Câu 126. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.
D. 1.
1
Câu 127. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. −3 ≤ m ≤ 4.

C. m = 4.
D. m = −3.
8
Câu 128. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 82.
D. 96.
!
1
1
1
Câu 129. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 130. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.

C. 10 năm.
D. 8 năm.
Trang 10/10 Mã đề 1


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

C

4.

5. A

B

6. A
D


8.

C

7.
9. A

C

10.

11.

D

12. A

C

13.

14. A

15. A

16.

C

17. A


18.

C

D

19.
21.

B

23. A
25.

D

27.

20.

B

22.

B

24.

B


26. A

C

28. A

29. A

30.

C

31. A

32.

C

33. A

34.

35.

D

36.

37.


D

38. A

39. A

40.

41. A

42.

43.

D

B
C
C
D

44. A

45.

B

46. A


47.

B

48.

C

50.

C

49.

D

51. A

52.

53. A

54. A

55.

D

56. A


C

57. A

58.

D

59. A

60.

D

61. A

62.

63. A

64.

65.
67.

B
D

66. A


C
B

68.
1

C


69.

70. A

B
D

71.
73.

72.

B

75. A
77.

C

74.


B

76.

B

78.

C
C

79.

D

80.

81.

D

82. A

83. A

84. A
D

85.
87.


86.

C

90.

91.

C

92. A

93. A

C

94. A

95.

D

97.

96. A

C

98.


B

100.

B

101.
103.

C

88. A

B

89.

99.

C

C

D

102. A
104.

B


105. A

106.

107. A

108.

109.

D

111. A

C
B
C

110.

D

112.

D

113.

B


114.

C

115.

B

116.

C

117.

C

118. A

119.

C

120.

121.

C

122.


123.

C

124.

125.

D

D
B

126.

127. A
129.

B

C

2

C

128.

B


130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×