Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (877)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.33 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1




x=t




Câu 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4


4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
!
5 − 12x
Câu 2. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
Câu 3. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.

Câu 4. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −9.
D. −15.
Câu 5.√ Biểu thức nào sau đây khơng có nghĩa
−3
−1.
B. 0−1 .
A.
Câu 6. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 135.

C. (−1)−1 .

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 32.

Câu 7. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.
Câu 8. Tứ diện đều thuộc loại

A. {3; 4}.
B. {3; 3}.
x+2
Câu 9. Tính lim
bằng?
x→2
x
A. 0.
B. 1.


D. (− 2)0 .

D. S = 22.
D. Ba mặt.

C. {5; 3}.

D. {4; 3}.

C. 3.

D. 2.

Câu 10. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.
D. 3.


x2 + 3x + 5
Câu 11. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. − .
C. .
D. 1.
4
4
Câu 12. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 1/10 Mã đề 1


C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

Câu 13. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.

C. 36.

D. 108.

Câu 14. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.
D. Chỉ có (I) đúng.

Câu 15. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
a 2
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
6
6

36
Câu 16.
Z [1233d-2] Mệnh đề nào sau đây sai?
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Câu 17. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.


Câu 18. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
9x
Câu 19. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 20. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

A. 3 mặt.
B. 4 mặt.
C. 5 mặt.
D. 6 mặt.
Câu 21. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 22. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.

C. 12.

D. 30.

Câu 23. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
3
a
a
3
a
3
A. a3 .

B.
.
C.
.
D.
.
3
6
2
Câu 24. Dãy số nào có giới hạn bằng 0?
!n
!n
n3 − 3n
6
−2
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =
.
n+1
5
3
Trang 2/10 Mã đề 1


Câu 25. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?

A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 26. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m < 3.
C. m ≥ 3.
D. m ≤ 3.
log 2x

Câu 27. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y

=
.
2x ln 10
x3
x3 ln 10
2x3 ln 10
Câu 28. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

C. y = log √2 x.
D. y = loga x trong đó a = 3 − 2.

Câu 29. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.

A. V =
3
6
6
2
Z 1
6
2
3
Câu 30. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 4.

B. −1.

C. 2.

D. 6.

Câu 31. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Nhị thập diện đều.

.3 − 2.2 − 3.3 + 6 = 0 là
C. 3.

D. Vơ nghiệm.

Câu 33. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
Câu 32. [12212d] Số nghiệm của phương trình 2
A. 1.
B. 2.

x−3

x−2

x−3

x−2

Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 6
a3 3

a 3
A.
.
B.
.
C.
.
D.
.
48
16
48
24
Câu 35. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
6
18
x
x

x
Câu 36. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 37. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 38.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 1.
C. 5.
D. 2.
tan x + m
Câu 39. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Trang 3/10 Mã đề 1



d = 300 .
Câu 40. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.


3a3 3
a3 3
3
3
.
C. V = 6a .
D. V =
.
A. V = 3a 3.
B. V =
2
2
Câu 41. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
Câu 42. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
x2 − 3x + 3

Câu 43. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.
C. x = 0.
D. x = 1.
Câu 44. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất


√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 3.
D. 8 2.
A. 7 3.
Câu 45. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 0.

C. 7.

Câu 46. [12214d] Với giá trị nào của m thì phương trình
B. 0 < m ≤ 1.

A. 0 ≤ m ≤ 1.


D. 9.
1

3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 2 < m ≤ 3.

C. 0.

D. 2.

Câu 47. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. +∞.

Câu 48. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
1 3
x − 2x2 + 3x − 1.
3

C. (−∞; 1) và (3; +∞). D. (−∞; 3).

Câu 49. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (1; 3).

B. (1; +∞).

Câu 50. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 51. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Năm cạnh.

Câu 52. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3



2 3
A. 1.
B.
.
C. 2.
D. 3.
3
Câu 53. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
Trang 4/10 Mã đề 1


ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3
C. m =
triệu.
D.
m

=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Câu 54. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 220 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 55. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 56. Tính lim

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

7n2 − 2n3 + 1

3n3 + 2n2 + 1
B. 0.

2
C. - .
3
Câu 57. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
A. 1.

D.

7
.
3

D. Vô nghiệm.

Câu 58. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.

D. −1 + 2 sin 2x.
q
2
Câu 59. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i

h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 60. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.
C. 6.
!2x−1
!2−x
3
3
Câu 61. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].

D. 8.

D. (+∞; −∞).

Câu 62. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1

ab
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 63. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [1; 2].

D. [−1; 2).

Câu 64. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.
!x
1

Câu 65. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log3 2.
C. log2 3.
D. − log2 3.
Trang 5/10 Mã đề 1


Câu 66. [1-c] Giá trị của biểu thức
A. 2.

B. 4.

log7 16
log7 15 − log7

15
30

bằng
C. −2.

D. −4.

Câu 67. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 2.
C. m = ± 3.

D. m = ±1.
3

2

x

3

Câu 68. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e5 .
C. e2 .

D. e3 .

Câu 69. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Bốn mặt.
D. Ba mặt.
Z 3
a
a
x
Câu 70. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.
Câu 71. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 72. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B. 1.
C.
.
D. 2.
A. .
2
2
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.

B.
.
C.
.
D.
.
12
4
6
12
Câu 74. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 14 năm.
D. 11 năm.
d = 30◦ , biết S BC là tam giác đều
Câu 75. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.

.
C.
.
D.
.
A.
26
16
9
13
Câu 76. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 12.
D. 30.
Câu 77. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
A.
.
B. 34.
C. 5.
D. 68.
17
Câu 78. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 79. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Trang 6/10 Mã đề 1


Câu 80.

bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
12
2
4
4
3
Câu 81. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 6.
2n − 3
bằng
Câu 82. Tính lim 2
2n + 3n + 1
A. 1.
B. +∞.

C. 0.
D. −∞.
Câu 83. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.

2
Câu 84. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.

D. x = 0.

D. −7.
3a
Câu 85. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
2a
a
A.
.
B. .

C.
.
D. .
3
3
3
4
0 0
0 0 0
Câu 86. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tứ giác.
log 2x
Câu 87. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
0
.
B. y0 = 3
.
C. y0 =
.
D.
y

=
.
A. y0 = 3
2x ln 10
x ln 10
2x3 ln 10
x3
1 − xy
Câu 88. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
1

Câu 89. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 90. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 6
a 3
a3 3
2a3 6
.
B.
.
C.
.
D.
.
A.
12
2
4
9
Câu 91. Mệnh đề nào sau đây sai?

A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.
Trang 7/10 Mã đề 1


x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 6.
C. 2 3.
D. 2 2.
Câu 92. [3-1214d] Cho hàm số y =

Câu 93. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.


Câu 94. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.


a

5

bằng

1
C. .
5

B. 25.

D. y0 = ln x − 1.

D.

5.

2

Câu 95. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 7.
C. 5.
D. 8.

2n + 1
Câu 96. Tính giới hạn lim
3n + 2
2
1
3
B. .
C. .
D. 0.
A. .
2
3
2
Câu 97. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x3 − 3x.
C. y = x4 − 2x + 1.
D. y = x + .
2x + 1
x
√3
Câu 98. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. 3.
C. .

D. −3.
3
3
Câu 99. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đơi.
Câu 100. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 101. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. 6.

D. −1.

Câu 102. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.

D. .
2
4
8
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
.
C. 40a3 .
D. 10a3 .
A. 20a3 .
B.
3
Câu 104.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z

Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 105. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 8.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

C. 20.

D. 12.

Câu 106. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.

.
D. 5.
2
2
Câu 107. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
2
3
Trang 8/10 Mã đề 1


Câu 108. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 109. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).
D. (−∞; −1).
mx − 4
Câu 110. Tìm m để hàm số y =

đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Câu 111. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
C.
A.
.
B. 6 3.
.
D. 8 3.
3
3

Câu 112. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
2x + 1

Câu 113. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
C. −1.
D. 2.
2
Câu 114. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 115. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
D. −2.
A. −7.
B. −4.
C.
27
Câu 116. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 117. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.


C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 118. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 119. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 144.

D. 4.

Câu 120. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
D.

.
c+2
c+1
c+2
c+3
Câu 121.
√cạnh bằng a


√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
A.
.
B.
.
C.
.
D.
.
4
6
12
2
Câu 122. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x) + C, với C là hằng số.
Z
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
Trang 9/10 Mã đề 1


C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 123. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

Câu 124. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.
C. 2.
!
1
1
1
Câu 125. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5

3
A. .
B. .
C. +∞.
2
2
!
1
1
1
+
+ ··· +
Câu 126. Tính lim
1.2 2.3
n(n + 1)
A. 1.

B. 0.

C. 2.

D. Khối lập phương.
D. 3.

D. 2.

D.

3
.

2

1 − 2n
Câu 127. [1] Tính lim
bằng?
3n + 1
2
2
1
B. 1.
C. .
D. − .
A. .
3
3
3
x
Câu 128. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. 1.
C.
.
D. .
2
2
2

Câu 129. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
Câu 130. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

3.

B

4. A

5.

B

6.

7.

D

8.

9.

D

10.

11.

B


12.

13. A

14. A

15. A

16.

17.

B

B
C
B
C
B
D
C

18.

19. A

20.

21. A


22.

D

24.

D

23.
25.

D
B
C

27.

26.

C

28.

C

29. A

30. A


31. A

32.

33.

D

36.

B

B

34. A

C

37. A

38.

D

39. A

40.

D


42. A

43.

D

44.

45.

D

46.

B
D

47.

C

48.

49.

C

50.

51.


C

52.

C

53.

C

54.

C

55. A

56.

C

57. A

58.

D

60.

D


59.

D

B
D

61.

B

62.

B

63.

B

64.

B

65.

D

66.


67.

D

68.

69.

70.

C
1

D
B
D


C

71.
73. A

D

75.
77. A

72.


D

74.

D

76.

C

78.

C

79.

B

80.

C

81.

B

82.

C


83. A

84.

85.
87.

86. A

C
B

C

88.
C

89.

B

90. A

91. A

92.

93. A

94.


B

96.

B

95.

B

C

97. A

98.

C

99. A

101.

C

102.

B

103. A


104.

B

105.

D

106.

B

107.

D

108. A
110.

109.
111.

B

C
B

112.


D

113.

D

114.

D

115.

D

117.

D

116.

B

118.

C

120. A
122.

B


124.

C

126. A
128.
130.

B
C

2

119.

C

121.

C

123.

C

125.

D


127.

D

129.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×