Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (978)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.92 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
! x3 −3mx2 +m
1
Câu 2. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên khoảng
π
(−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 3. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −15.
D. −5.
Câu 4. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi


A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.



x=t




Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2

2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4
2
Câu 6. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
2n + 1
Câu 7. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 3.
D. 1.

Câu 8. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = 1 − ln x.

D. y0 = x + ln x.

Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − .
C. − 2 .
D. − .
2e
e
e
Z 1
Câu 10. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. 1.
C. 0.
D. .

2
4
0
Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 11.
C. 10.
D. 12.
d = 300 .
Câu 12. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.
D. V =
.
2
2
Trang 1/11 Mã đề 1



Câu 13. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 14. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

Câu 15. Hàm số y =

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.

A. x = 1.

C. 3.

C. x = 0.

D. 0.

D. x = 3.


Câu 16. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
d = 60◦ . Đường chéo
Câu 17. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0




3
3

4a

a
6
6
2a3 6
.
B. a3 6.
.
D.
.
C.
A.
3
3
3
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 19. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.

D. 3.

Câu 20. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.

B. 12.

D. 30.

C. 8.

Câu 21. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 22. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 23. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.
Câu 24.
Z Các khẳng định
Z nào sau đây là sai?

A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Z
B.
Z
D.

D. x = 0.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

Câu 25. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Trang 2/11 Mã đề 1


Câu 26. Tính lim

x→+∞

x−2
x+3

2
C. − .
D. 2.
3
Câu 27. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5

3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
2
2
x y−2 z−3
x−2 y−2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
3

4
A. −3.

B. 1.

Câu 28. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
2
2
2
1 + 2 + ··· + n
Câu 29. [3-1133d] Tính lim
n3
1
B. +∞.
C. 0.
A. .
3
Câu 30. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.

D. −2.

D.


2
.
3

Câu 31. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3
a3 3
3
A.
.
B.
.
C. a .
D.
.
6
3
2
Câu 32. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 33. Khối đa diện đều loại {5; 3} có số cạnh

A. 20.
B. 30.

C. 12.

D. 8.

Câu 34. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 12.

C. 8.

D. 30.

Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C. a 2.
D.
.
2
3

x2 − 9
Câu 36. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. −3.
D. +∞.
tan x + m
Câu 37. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. (1; +∞).
D. [0; +∞).
x2 − 5x + 6
x→2
x−2
B. 1.

Câu 38. Tính giới hạn lim
A. 0.

C. 5.

D. −1.
Trang 3/11 Mã đề 1



2mx + 1
1
Câu 39. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 40. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 2400 m.
D. 1202 m.
Câu 41. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
Câu 42. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln 2.
C. y0 =
.
D. y0 = 2 x . ln x.

A. y0 = x
2 . ln x
ln 2
Câu 43. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Bát diện đều.
x−2 x−1
x
x+1
Câu 44. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 45. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
−2x2

Câu 46. [2-c] Giá trị lớn nhất của hàm số y = xe

1
2
B. 2 .
A. 3 .
e
e

trên đoạn [1; 2] là
1
C. 3 .
2e

D. 9 mặt.
D.

1
√ .
2 e

Câu 47. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 48. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
B. 6 3.
C.
.
D.
.
A. 8 3.
3
3
Câu 49. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.

Câu 50. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 38
3a 58
A.
.

B.
.
C.
.
D.
.
29
29
29
29
Câu 51. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 52. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.

C. 2.

D. +∞.
Trang 4/11 Mã đề 1


Câu 53. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.


C. {5; 3}.

D. {3; 3}.

Câu 54. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 55. Thể tích của khối lăng√trụ tam giác đều có cạnh √
bằng 1 là:

3
3
3
3
B.
.
C.
.
D.
.
A. .
4
4
2
12
Câu 56. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào

dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.016.000.
D. 102.423.000.
Câu 57. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
a3 3
2a3 3
5a3 3
4a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp đơi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 59. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.

D. 10 mặt.

Câu 60. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 61. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
C. y = log π4 x.
Câu 62. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.
Câu 63. [2] Phương trình log4 (x + 1) + 2 = log √2

A. Vô nghiệm.
B. 1 nghiệm.
2

C. 8.
D. 6.

3
4 − x + log8 (4 + x) có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. 3 nghiệm.

Câu 64. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
8

4
4
12
Câu 65. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
ln x p 2
1
Câu 66. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3

9
9
3
Trang 5/11 Mã đề 1


Câu 67. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
24
8
24
48
Câu 68. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.
D. Năm mặt.
Câu 69.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6
2
4
12
x2 − 12x + 35
Câu 70. Tính lim
x→5
25 − 5x

2
2
A. .
B. +∞.
C. −∞.
D. − .
5
5
Câu 71. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.
2

Câu 72. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.
D. 2 − log2 3.



x = 1 + 3t




Câu 73. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = −1 + 2t
x = 1 + 3t
x = 1 + 7t
x = −1 + 2t

















A. 
C. 
.
D. 
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .

















z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
x2
Câu 74. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
[ = 60◦ , S A ⊥ (ABCD).
Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3

a 2
a 3
a3 2

3
A.
.
B.
.
C. a 3.
D.
.
12
6
4
Câu 76. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. [−1; 3].
D. (−∞; −3].
Câu 77. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.

D. m > 0.

Câu 78. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3

120.(1, 12)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Trang 6/11 Mã đề 1


100.1, 03
100.(1, 01)3
triệu.
D. m =
triệu.
3
3
Câu 79. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
24
6
36
x3 − 1
Câu 80. Tính lim
x→1 x − 1
A. +∞.
B. −∞.
C. 3.
D. 0.
C. m =

Câu 81. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
D. V = S h.

A. V = S h.
B. V = 3S h.
C. V = S h.
3
2
Câu 82. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.


Câu 83. Tìm giá trị lớn nhất của hàm
số
y
=
x
+
3
+
6√− x


A. 3.
B. 2 + 3.
C. 2 3.
D. 3 2.
Câu 84. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).

B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 85. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
.
B. P =
.
C. P = 2.
D. P = 2i.
A. P =
2
2
1 − n2
bằng?
Câu 86. [1] Tính lim 2
2n + 1
1
1
1
A. 0.
B. .
C. .
D. − .
3
2
2
1 − xy
Câu 87. [12210d] Xét các số thực dương x, y thỏa mãn log3

= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 88. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
!
5 − 12x
Câu 89. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8

A. Vơ nghiệm.
B. 1.
C. 3.
D. 2.
Câu 90. Tính lim
A. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.

C.

7
.
3

2
D. - .
3
Trang 7/11 Mã đề 1


1
Câu 91. [1] Giá trị của biểu thức log √3
bằng
10
1
A. .
B. −3.

3

C. 3.

1
D. − .
3

Câu 92. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. 3.
B. 1.
C. .
D. .
2
2

Câu 93. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6

A.
.
B.
.
C.
.
D.
.
6
18
6
36

x2 + 3x + 5
Câu 94. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
D. 1.
4
4
Câu 95. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 4.

D. 3.
Câu 96. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 97. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 98. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
 π
Câu 99. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4

e .
B. 1.
C. e .
D.
e .
A.
2
2
2
Câu 100. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).

Câu 101. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (−∞; 0) và (1; +∞).
d = 120◦ .
Câu 102. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.

C. 2a.
D.
.
2
Câu 103. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = R \ {1; 2}.
2

D. D = (−2; 1).
Trang 8/11 Mã đề 1


1 − 2n
Câu 104. [1] Tính lim
bằng?
3n + 1
2
2
A. .
B. − .
3
3

1
.
D. 1.
3
a

1
Câu 105. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 1.
D. 4.
C.

Câu 106. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách √
từ C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 1.
B. 3.
C.
.
D. 2.
3
1
Câu 107. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?

x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 108. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 212 triệu.
D. 216 triệu.
Câu 109. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 110. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.

C. 4.


D. 2.

Câu 111. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B. un =
.
n2
5n − 3n2

1 − 2n
C. un =
.
5n + n2

n2 + n + 1
D. un =
.
(n + 1)2

Câu 112. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. −3.
D. 3.





Câu 113. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 114. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
a 3
8a 3
A.
.
B.
.
C.

.
D.
.
3
9
9
9
Câu 115. Biểu thức nào sau đây√khơng có nghĩa

−3
A. (−1)−1 .
B.
−1.
C. (− 2)0 .
D. 0−1 .

Câu 116. Thể tích của khối lập phương có cạnh bằng a 2



2a3 2
3
3
3
A. V = 2a .
B. 2a 2.
C. V = a 2.
D.
.
3

2

2

Trang 9/11 Mã đề 1


Câu 117. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
B. +∞.

A. 0.

C. 1.

un
bằng
vn
D. −∞.

Câu 118. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
Câu 119. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.


C. 12.
1
9
C. log2 3.

Câu 120. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. − log3 2.

B. 1 − log2 3.

D. 20.
!x

D. − log2 3.

Câu 121.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
Z x
Z
xα+1
C.
xα dx =
+ C, C là hằng số.

D.
0dx = C, C là hằng số.
α+1
Câu 122. Tính lim
A. 1.

5
n+3

B. 0.

C. 2.

D. 3.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
.
B. .
C. .
D.
.

A.
3
3
4
3
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 124. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
1
Câu 125. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.

B. 1.
C. 3.
D. 4.
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 127. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích


2
2
2
2
a 7
a 5
a 2
11a
A.
.
B.
.
C.
.
D.
.
8
16
4
32
Câu 128. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).

D. (−∞; 6, 5).
Trang 10/11 Mã đề 1


8

Câu 129. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 81.
D. 82.
Câu 130. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+3
c+1
c+2

D.

3b + 2ac
.
c+2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2.

3.

B

4.
D

5.

6.

7. A
9.

D
B

8. A
B


10. A
D

11.

14.

15. A

16.
B

19. A

D
B

20.

B

B

22. A

23.

B

24.

C

B

18.

21.
25.

C

12.

13. A
17.

B

26.

D
B

27. A

28.

D

29. A


30.

D

31.
33.

D

32.
34.

B

35. A

36.

39.

B

40. A

41.

B

42.


43.

B

44.

46.

B

47.

48.

B

49. A

50.

D

D
B
C
B

53.
C


54.
B

B

57.

B

C

59.

60.

C

61.

62.

D

63.
65.

64. A

D


55.

58.

66.

B

51. A

52. A
56.

D

38.

C

37.

C

C
D
C
D

67. A


B

69.

68. A
1

D


70. A

71. A

72.

D

73. A

74.

D

75.

76.

B


D

77.

78. A

C

79. A

80.

81.

C

82.

D

83.

84.

D

85.

86.


D

87. A

88.

D

89.

90.

D

91.

C
D
C
B
D

92.

C

93.

94.


C

95.

D

97.

D

99.

D

96. A
98.
100.

D

101.

B

102.
104.

D
D

C
B

112.

C
D

114.
116.

107.

B

109.

B

111.

C

113.

C

C
D


119.

C

121.

C

123. A

B

124.

D

125.

126.

D

127. A

128.
130.

D

117. A


120.
122.

B

115.

B

118.

C

105. A

106.
110.

103.

B

108.

B

129.

B

C

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×