Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (161)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.45 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 2. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.
Câu 3. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.

1
3
3
B. .
C. 1.
D.
.
A. .
2
2


2
Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 5. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1

C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 7. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. 1.
D. e2016 .
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 8. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. 1.
C. .
D. 2.
2
Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −e2 .

C. −2e2 .
D. 2e2 .
2

Câu 10. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. 1.
D. .
2
2
Câu 11. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Tốn là
10
40
20
20
C50
.(3)40
C50
.(3)10
C50
.(3)30
C50
.(3)20

A.
.
B.
.
C.
.
D.
.
450
450
450
450
Câu 12. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m > 0.
D. m < 0.
Trang 1/10 Mã đề 1


Câu 13. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 5}.
D. {4; 3}.
x
x−3 x−2 x−1
+
+
+

và y = |x + 2| − x − m (m là tham
Câu 14. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
Câu 15. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 16. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aαβ = (aα )β .
A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
a
un
Câu 17. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. +∞.
C. 0.

D. 1.
Câu 18. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A.
.
B. 1.
C. 2.
D. 3.
3

Câu 19. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
Câu 20. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).
D. (−1; −7).

log 2x
Câu 21. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 22. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
A. −4.
B. −2.
C. −7.
D.
27
! x3 −3mx2 +m

1
Câu 23. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 20a3 .
D. 10a3 .
3
Câu 25. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D. R.
Câu 26. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

C. 30.

D. 12.

Trang 2/10 Mã đề 1


2

Câu 27. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 6.

D. 7.

Câu 28. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.
Câu 29. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.


Câu 30. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
D. Phần thực là 1 − 2, phần ảo là − 3.

C. Phần thực là 2, phần ảo là 1 − 3.
1
Câu 31. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 32. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 0.

C. 2.

D. 1.

Câu 33. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. −
.

B.
.
C.
.
D. − .
100
25
100
16
Câu 34. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 35. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


C. 8 3.
D. 7 3.
A. 16.
B. 8 2.
Câu 36. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3

3
3
4a
2a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
log7 16
Câu 37. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −4.
C. −2.
D. 2.
Câu 38. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.

C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 39. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 10 cạnh.

C. 9 cạnh.

D. 12 cạnh.

Câu 40. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

Câu 41. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .

D. T = 4 + .
e
e
Trang 3/10 Mã đề 1



Câu 42. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 43. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 3.
C. 6.
D. 2 2.
Câu 44. [3-1214d] Cho hàm số y =

Câu 45. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
3
a
a 3
a 3
A.
.

B.
.
C.
.
D. a3 .
3
3
9
x2 − 5x + 6
Câu 46. Tính giới hạn lim
x→2
x−2
A. 0.
B. −1.
C. 5.
D. 1.
Câu 47. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Bốn cạnh.

D. Ba cạnh.

Câu 48. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

D. 8.

C. 10.


Câu 49. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C.
.
D. 2a 2.
B.
A. a 2.
2
4
Câu 50. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 51.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2

a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
2
4
12
6
Câu 52. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].
Câu 53. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.

nk
Câu 54. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có một.
D. Có hai.
C. lim qn = 1 với |q| > 1.

D. lim

Trang 4/10 Mã đề 1


Câu 55. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Không có câu nào C. Câu (III) sai.
sai.

D. Câu (II) sai.

1
Câu 56. Hàm số y = x + có giá trị cực đại là
x
A. −1.

B. −2.

C. 2.
D. 1.
√3
Câu 57. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. 3.
C. −3.
D. − .
3
3
2n − 3
Câu 58. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. 1.
D. −∞.
1
Câu 59. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. −3 ≤ m ≤ 4.

D. m = −3, m = 4.
x−1 y z+1
Câu 60. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
2

2

Câu 61. [3-c]
số f (x) = 2sin x + 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 62. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.


C. Khối tứ diện đều.

D. Khối bát diện đều.

x2
Câu 63. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 64. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 65.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.


Z

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Trang 5/10 Mã đề 1


Câu 66. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là

3


a3 3
2a3 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
6
3
3
Câu 68. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. 13.
D. Không tồn tại.
Câu 69. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

Câu 70. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.


D. {4; 3}.

D. {5; 3}.
3a
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4
x
y
Câu 72. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
B. 27.
C. 18.
D. 12.
A.
2
x+2
bằng?
Câu 73. Tính lim
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
4x + 1
Câu 74. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. 2.
C. −4.
D. 4.
Câu 75. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.

.
B.
.
C.
.
D. a3 .
12
6
24
Câu 76. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 7 năm.
C. 10 năm.
D. 9 năm.
d = 30◦ , biết S BC là tam giác đều
Câu 77. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.

C.
.
D.
.
16
26
13
9
Câu 78. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

2a 3
a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
Câu 79. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng

A. 32π.
B. 8π.
C. V = 4π.
D. 16π.
Trang 6/10 Mã đề 1


Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a 3
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
24
48
48
16

1
Câu 81. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Câu 82. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
.
B. un =
.
A. un =
5n + n2
5n − 3n2

n2 + n + 1
C. un =
.
(n + 1)2

Câu 83. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.

n2 − 3n
D. un =
.
n2


ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 22.

Câu 84. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).

Câu 85. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là


a3 3
a3 3
a3
3
D.
A.
.

B.
.
C. a 3.
.
12
4
3
Câu 86. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4 − 2e
4e + 2
4e + 2
Câu 87. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = [2; 1].
2


D. D = R \ {1; 2}.

Câu 88. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Câu 89. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.

C. y0 = x + ln x.

D. y0 = 1 − ln x.

Câu 90. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2
1
Câu 91. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.

A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 92. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; +∞).

D. (4; 6, 5].

Câu 93. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
Câu 94. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.

Câu 95. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.

D. 8 mặt.
Trang 7/10 Mã đề 1



log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. −8.

Câu 96. [1-c] Giá trị biểu thức
A. 3.

Câu 97. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.
C. −5.

D. 1.

2

D. −6.

Câu 98. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3

a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
48
8
24
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 99. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
!
1
1
1

Câu 100. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
Câu 101. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 102. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
D.
.
c+3
c+1
c+2
c+2
Câu 103. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).


n−1
Câu 104. Tính lim 2
n +2
A. 3.
B. 2.

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

C. 1.

D. 0.

Câu 105. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.
2x + 1
Câu 106. Tính giới hạn lim
x→+∞ x + 1

1
A. −1.
B. .
C. 1.
D. 2.
2
Câu 107. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 10.
D. 8.
!
!
!
x
4
1
2
2016
Câu 108. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.

B. T = 1008.
C. T = 2016.
D. T = 2017.
2017
q
Câu 109. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
Trang 8/10 Mã đề 1


8
Câu 110. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 82.
D. 81.
Câu 111. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.

C. 216 triệu.
D. 210 triệu.
Câu 112. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Câu 113. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (−∞; +∞).

D. (1; 2).

Câu 114. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.

D. 72.

x3 −3x+3

Câu 115. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
2
A. e .
B. e .
C. e.

D. e3 .
Z 1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
Câu 116. Cho
0

1
1
B. 0.
C. .
D. 1.
A. .
2
4
Câu 117. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. 1 + 2 sin 2x.
D. −1 + 2 sin 2x.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 118. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
Câu 119. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e.

C. 2e + 1.
D. 3.
A. .
e
Câu 120. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 121. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; −1).

D. (−∞; 1).

Câu 122. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vơ số.

1−x2



− 3m + 4 = 0 có nghiệm
3
3

C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
x+3
Câu 124. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. 3.
D. Vơ số.

Câu 123. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

Câu 125. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.

− 4.2 x+

C. 30.

1−x2


D. 8.
Trang 9/10 Mã đề 1


x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 127. Tìm m để hàm số y =
x+m
A. 34.
B. 26.
C. 67.
D. 45.
Câu 126. [4-1212d] Cho hai hàm số y =


Câu 128. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 130. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là



a3 2
a3 3
a3 3
2
.
C.
.
D.
.
B.
A. 2a 2.
12
24

24
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

C

3.

C

4.

C

5.

C

6. A


7. A
9.

8.

B

10.

B
D

11.

12.

D
B

13.

C

14.

C

15.


C

16.

C

17.

C

18.

C

19. A
21.

B

23. A
25.

20.

B

22.

B


24.
B

26. A

27.

D

29. A
31.

C

28.

B

30.

B

32.

B

33. A

34.


35. A

36. A

37.

B

38. A

39.

B

40.

41. A
43.

C

45. A
47.
49.

D
B

44.


B

46.

B

48.

D

50.

D

52. A

53.

C

54.
56.

57. A

D
B

58. A


59.

D

61.

60. A
62.

C

63.

D

65.
67.

C
B

C
B

C

42.

51.
55.


C

B

64. A

C
B
1

66.

B

68.

B


69. A

70.

C

71. A

72.


C

C

73.
75. A

C

77.
80.

B

D

76.

D

78.

D
C

81.

82. A
84.


74.

83.

B

85.

B

86.

D

87.

88.

D

89. A

90.

D

91.

92.


D

93. A

D
B
C

94.

C

95.

C

96.

C

97.

C

99.

98. A
100.

D


102.

C

101.

C

103.

C
C

104.

D

105.

106.

D

107. A

108.

B


110.

D

D

109.

B

111.

B

112. A

113.

114. A

115. A

116. A

117.

D

119.


D

118.

B

120.

C

121.

122.

C

123.

124.

C

125. A

126.

B
D

127. A


B

128.
130.

C

D

129.

C

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×