Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (174)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.44 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Biết log6
A. 36.


a = 2 thì log6 a bằng
B. 6.

C. 108.

D. 4.

Câu 2. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 3. Gọi F(x) là một nguyên hàm của hàm y =
x
3


8
8
1
1
A. .
B. .
C. .
D. .
3
9
9
3
4x + 1
bằng?
Câu 4. [1] Tính lim
x→−∞ x + 1
A. 2.
B. −1.
C. −4.
D. 4.
log(mx)
Câu 5. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 6. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể

tích khối√chóp S .ABMN là



a3 3
4a3 3
5a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 7. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 12 cạnh.
Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

Câu 9. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình tam giác.

D. Hình chóp.

Câu 10. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
log(mx)
Câu 11. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.

B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
0

0

0

0

Câu 12. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 13. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 14. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

C. 10.


D. 8.
Trang 1/10 Mã đề 1


Câu 15. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 7 3.
D. 16.
A. 8 3.
Câu 16. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.

Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 2.

C. 3.

A. 2.


B. 6.

C. 4.

D. 20.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.
d = 60◦ . Đường chéo
Câu 18. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
a3 6
4a3 6
3
.
C.
.
D.
.
B.
A. a 6.

3
3
3
Z 1
6
2
3
Câu 19. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
D. −1.

Câu 20. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. [3; 4).
B. (1; 2).
C. 2; .
D.
;3 .
2
2



ab.

Câu 21. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 6.
C. 10.
D. 8.
1
Câu 22. [1] Giá trị của biểu thức log √3
bằng
10
1
1
C. .
D. 3.
A. −3.
B. − .
3
3
mx − 4
Câu 23. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.
D. 26.
Câu 24. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng


2
.
e
Câu 25. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 12.
D. 4.
A. 2e.

B. 2e + 1.

C. 3.

D.

Câu 26. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .


Câu 27.
Tìm
giá
trị
lớn

nhất
của
hàm
số
y
=
x
+
3
+
6−x



A. 3 2.
B. 2 + 3.
C. 3.
D. 2 3.
cos n + sin n
Câu 28. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
n−1
Câu 29. Tính lim 2
n +2
A. 2.
B. 0.

C. 3.
D. 1.
Trang 2/10 Mã đề 1


Câu 30. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.

D. 3 nghiệm.

x2 − 9
Câu 31. Tính lim
x→3 x − 3
A. +∞.
B. −3.

D. 3.

C. 6.

Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.

B.
.
C.
.
D.
.
A.
12
4
6
12
Câu 33. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.

2
Câu 34. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 35. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.

D. Có hai.
Câu 36. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 37. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
1
C. lim k = 0.
D. lim = 0.
n
n
3
2
Câu 38. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −7.
C. −2.
D.
.
27
1
Câu 39. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.

C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 40. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 8.

C. 4.

D. 5.

Câu 41. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a
3a 58
a 38
A.
.
B.
.
C.
.
D.
.
29
29

29
29
!x
1
1−x

Câu 42. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. − log3 2.
B. − log2 3.
C. 1 − log2 3.
D. log2 3.
2n − 3
Câu 43. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. −∞.
C. +∞.
D. 0.

Câu 44. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.


Câu 45. Phần thực và √
phần ảo của số phức

√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Trang 3/10 Mã đề 1


Câu 46. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. (4; +∞).

Câu 47. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (2; +∞).
D. (−∞; 1).

Câu 48. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
1 − n2
Câu 49. [1] Tính lim 2

bằng?
2n + 1
1
1
1
B. .
C. − .
D. 0.
A. .
2
3
2
Câu 50. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 51. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.

Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 53. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x4 − 2x + 1.
B. y = x3 − 3x.
C. y =
.
D. y = x + .
2x + 1
x
√3

Câu 54. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
D. .
A. −3.
B. 3.
C. − .
3
3
0 0 0 0
0
Câu 55.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
7
2
2

Câu 56. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
9
3
Câu 57. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Năm mặt.
Câu 58. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog


a

5


1
A. 5.
B. 25.
C. .
5
Câu 59. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.

bằng


D.

5.

D. 1.

Câu 60. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 4/10 Mã đề 1


Câu 61. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1

C. V = S h.
D. V = S h.
A. V = 3S h.
B. V = S h.
3
2
Câu 62. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ đã cho
√ là 1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 63. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là

BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
12
6
Câu 65. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.
C. 12.
D. 10.
2

Câu 66. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là

A. 7.
B. 8.
C. 5.

D. 6.

3
2
Câu 67. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.


D. 3 − 4 2.

Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3

8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 69. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 5.
D. 0, 4.
Câu 70. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. 3n3 lần.
D. n lần.
d = 120◦ .
Câu 71. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

A. 4a.
B. 2a.
C.
.
D. 3a.
2
!
3n + 2
2
Câu 72. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
2

Câu 73. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 74. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e2 .
C. 2e4 .

D. −2e2 .
1
Câu 75. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Trang 5/10 Mã đề 1


Câu 76. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 77. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
C. .
D. 5.
A. 7.
B.
2

2
Câu 78.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
Câu 79. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 1.
D. f 0 (0) = 10.
ln 10
!
1
1
1
Câu 80. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. 2.
C. .
D. .
2

2

2
Câu 81. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vô số.
D. 62.
Câu 82. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).

D. (−∞; −1).
 π π
Câu 83. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 1.
D. 7.
1 − 2n
Câu 84. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .

B. − .
C. 1.
D. .
3
3
3
[ = 60◦ , S O
Câu 85. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
17
19
19
Câu 86. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e

A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 87. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.
q
Câu 88. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].

D. m ∈ [−1; 0].
Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 6
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
24
48
16
Trang 6/10 Mã đề 1


Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
8
24
24
48
[ = 60◦ , S O
Câu 91. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
2a 57
a 57

.
B.
.
C. a 57.
D.
.
A.
17
19
19
Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
C. 5.
D. 2.
Câu 93. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 20.
log 2x
Câu 94. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.

C. y0 =
.
3
2x ln 10
2x ln 10
x3
Câu 95. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 5}.
−2x2

Câu 96. [2-c] Giá trị lớn nhất của hàm số y = xe
2
1
B. 3 .
A. √ .
e
2 e

trên đoạn [1; 2] là
1
C. 2 .
e

D. 30.

D. y0 =

1 − 2 ln 2x

.
x3 ln 10

D. {3; 4}.
D.

1
.
2e3

Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

a
1
Câu 98. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là

4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
Câu 99. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.

C. 0.

D. 1.

Câu 100. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 101. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 8 năm.
D. 9 năm.
Câu 102. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a

8a
5a
2a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 103. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Trang 7/10 Mã đề 1


2n2 − 1
Câu 104. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
3

x2 − 5x + 6
Câu 105. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
C. 0.

x2 + 3x + 5
Câu 106. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. − .
C. 0.
4
Câu 107. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 22016 .
C. 1.

D. 0.

D. −1.

1
.
4

= (x2 − 3)e x trên đoạn [0; 2].
D.

D. e2016 .

Câu 108. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
D. y = log 14 x.
C. y = log π4 x.
Câu 109. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 110. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 3
a 2
A.
.

B.
.
C. a3 3.
D.
.
2
4
2
Câu 111. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D. Hai cạnh.

d = 300 .
Câu 113. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3


3a 3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
!
x+1
Câu 114. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A. 2017.
B.
.
C.
.
D.
.
2017
2018
2018
0


0

0

Câu 115. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2

D. D = R.

x2 +2x

Câu 116. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. 6.
B. 5.
C. −6.

D. −5.

Câu 117. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 8/10 Mã đề 1


C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.




x=t




Câu 118. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2

2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 119. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Thập nhị diện đều. D. Tứ diện đều.
Câu 120. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 1 − sin 2x.

Câu 121. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 122.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 2.
C. 5.
D. 1.
Câu 123. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un

B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 124. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 125. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.


B. 0.

C. 2.

D. 1.

Câu 126. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 127. Xét hai câu sau
Trang 9/10 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.

Câu 128. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y+2 z−3
A. = =
.
B.
=
=

.
1 1
1
2
2
2
x−2 y−2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
3
4
2
3
−1
x2 − 12x + 35
Câu 129. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.

D. − .
5
5
Câu 130. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D

2. A
4.

B
D

5.
7.


C

9.

C

6. A
D

8.
10. A

11. A

12. A

13.

D

14.

15.

D

16.

17. A


D
B

18. A

19.
21.

D

D

20.

C
B

22.

B

23.

C

24.

C


25.

C

26.

C

28.

C

27. A
29.

B

31.

30. A
32. A

C

33.

D

34.


B

35. A

36.

C

37. A

38.

C

39.

C

40. A

41.

C

42.

43.

D


45.
47.

44. A
46.

C
B

49.

B
C

48. A
50. A

C

51. A

52. A

53.

54.

C

D


55. A

56. A

57. A

58.

B

60.

B

59.
61.

C
B

63.

C

62.

C

64.


C

65.

B

66. A

67.

B

68.
1

C


69. A

70. A

71.
73. A

74. A

75. A


76.

77.
79.

80.

B
D

83.
87.

84.
D

B

89.

C
B

86.

D

88.

D


90.

C
D

91.

B

82.

C

85.

D

78. A

C

81.

D

72.

C


92.

C
B
D

93.

C

94.

95.

C

96.

C

98.

C

97. A
C

99.
101.


100. A
D

103.

102.

D

107. A
109.

B
B

115.

D

B

108.

B

112.

C

114.


C

116.

117. A
119.

106.
110. A

111. A
113.

D

104.

C

105.

B

C

D

118.


B

120.

B

121.

B

122.

B

123.

B

124.

B

125.

C

126. A

127.


C

128. A

129. A

130. A

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×