Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (114)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.64 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
2
4
Câu 2. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 3. [3-1226d] Tìm tham số thực m để phương trình


log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 4. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. 2.
C. .
A. − .
2
2
1 − 2n
Câu 5. [1] Tính lim
bằng?
3n + 1
2
1
C. .
A. 1.
B. .
3
3
2
0
Câu 6. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng

D. −2.


2
D. − .
3

2
.
e
Câu 7. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
A. 3.

B. 2e.

C. 2e + 1.

Câu 8. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (−∞; 1).

D.

D. (0; 2).


Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Câu 10. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.
D. f 0 (0) =
.

ln 10
Câu 11. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 12. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 3.
C. a 6.
D.
.
2
2
Câu 13. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √

A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
Trang 1/10 Mã đề 1



Câu 14. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.

Câu 15. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. 64.
D. Vô số.
Câu 16. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

d = 30◦ , biết S BC là tam giác đều
Câu 17. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √

và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
13
9
16
!
!
!
4x
1
2
2016
Câu 18. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f

4 +2
2017
2017
2017
2016
.
D. T = 2017.
A. T = 1008.
B. T = 2016.
C. T =
2017
d = 300 .
Câu 19. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.3 √

a 3
3a3 3
.
B. V = 6a3 .
C. V =
.
D. V = 3a3 3.
A. V =
2
2
Câu 20. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.

C. 9 mặt.
D. 8 mặt.
2−n
bằng
Câu 21. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 0.
D. 2.
x−3 x−2 x−1
x
Câu 22. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. [2; +∞).
Câu 23. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.

C. 8π.
D. V = 4π.
Câu 24. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 25. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 26. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 2/10 Mã đề 1


Câu 27. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 28. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.

C. 6.

D. 2.

Câu 29. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3

3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 31. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
3. Thể tích khối chóp S .ABCD là
cùng vng
góc
với
đáy,
S
C
=
a



3
a 3
a3
a3 3
3
A.
.
B. a .
C.
.
D.
.
9
3
3
Câu 32. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 5 mặt.
Câu 33. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 34. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.

x→+∞
x→+∞
f (x) a
= .
D. lim [ f (x)g(x)] = ab.
C. lim
x→+∞
x→+∞ g(x)
b
 π
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π3
A.
e .
B.
e .
C. e .
D. 1.
2
2
2
Câu 36. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
C. 4.

D. 8.
Câu 37.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √

3
3
3
3
A.
.
B. .
C.
.
D.
.
12
4
2
4
Câu 38. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
!
5 − 12x
Câu 39. [2] Phương trình log x 4 log2

= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
!2x−1
!2−x
3
3
Câu 40. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).
D. [1; +∞).
Trang 3/10 Mã đề 1


Câu 41. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 2.
C. m = ±1.
D. m = ± 3.
Câu 42. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.

B. 0.

C. 7.

D. 5.

Câu 43. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 1202 m.
D. 6510 m.
Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 4.

Câu 45. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. 3.
D. (0; +∞).

d = 120◦ .
Câu 46. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.

C. 4a.
D. 3a.
A. 2a.
B.
2
Câu 47. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 48. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.

D. D = R \ {0}.

Câu 49. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.

x2

Câu 50. [2] Tổng các nghiệm của phương trình 3 x−1 .2 = 8.4 x−2 là
A. 3 − log2 3.

B. 2 − log2 3.
C. 1 − log3 2.

D. 1 − log2 3.

Câu 51. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 52. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 8.

D. 30.

Câu 53. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Nhị thập diện đều. C. Tứ diện đều.

D. Bát diện đều.

Câu 54. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.


D. x = −5.

Câu 55. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 8 3.
B.
.
C. 6 3.
D.
.
3
3
Câu 56. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.

.
D.
.
c+2
c+3
c+2
c+1
Câu 57. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.
C. 10.
D. 8.
Trang 4/10 Mã đề 1


Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
2n + 1
Câu 59. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .
C. .

D. .
3
2
2
1
Câu 60. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.


Câu 61. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 62. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
" đây?
5
5

A. 2; .
;3 .
D. [3; 4).
B. (1; 2).
C.
2
2
Câu 63. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
C. − .
B. − .
e
2e
e
2n2 − 1
Câu 64. Tính lim 6
3n + n4
2
A. .
B. 2.
C. 1.
3
Câu 65. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 5.
Câu 66. Khối đa diện đều loại {3; 3} có số cạnh

A. 6.
B. 8.

D. −e.

D. 0.
D. 3.

C. 5.

D. 4.
! x3 −3mx2 +m
1
Câu 67. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 68. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
8
Câu 69. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.

B. 82.
C. 96.
D. 81.
Câu 70. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có một hoặc hai.
Câu 71. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Trang 5/10 Mã đề 1


Câu 72. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4

4
Câu 73. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 74. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
Câu 75.
! định nào sau đây là sai?
Z Các khẳng
0

A.
Z
C.

Z

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

B.
Z
D.


D. 2 nghiệm.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

!
3n + 2
2
Câu 76. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 4.
C. 3.
D. 5.
Câu 77. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7

C. 6.
D. .
A. 9.
B. .
2
2
Câu 78. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 4.
D. 6.

Câu 79. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 2 nghiệm.
Câu 80. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 81. [1-c] Giá trị của biểu thức
A. 2.

B. 4.

log7 16
log7 15 − log7


15
30

bằng
C. −4.

Câu 82. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. 1.
C. .
2
!x
1
1−x
Câu 83. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.

D. −2.

D.

ln 2
.
2


D. log2 3.

Câu 84. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
0 0 0 0
0
Câu 85.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
2

3

Trang 6/10 Mã đề 1


7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
7
C. 1.
D. - .
A. 0.
B. .
3
3
2
Câu 87. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 72cm3 .
D. 46cm3 .
q
Câu 88. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].

D. m ∈ [0; 2].
Câu 86. Tính lim

Câu 89. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. .
A. √ .
n
n

C.

n+1
.
n

D.

sin n
.
n

Câu 90. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b

x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 91. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 92. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
2

2

sin x
Câu 93. [3-c]
+ 2cos x lần
√ lượt là

√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
A. 2 và 2 2.

2
x + 3x + 5
Câu 94. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. − .
C. 0.
D. .
4
4
2x + 1
Câu 95. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. −1.
D. 1.
2
π
Câu 96. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá

3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 4.

Câu 97. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; −1).
0

0

D. (−∞; 1).

0

Câu 98. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng

3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3
Trang 7/10 Mã đề 1


Câu 99. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
x−3
bằng?
Câu 100. [1] Tính lim
x→3 x + 3
A. 1.
B. +∞.
C. 0.
D. −∞.
x
Câu 101.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3

3
A.
.
B. .
C. 1.
D. .
2
2
2

Câu 102. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].

log23

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 103. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 18 tháng.

B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 104.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

6
. Tính

Câu 105. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x + 1
Z 1
f (x)dx.
0

A. 2.

B. 6.

C. 4.

D. −1.


Câu 106. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3
a3 3
3
A.
.
B. a 3.
C.
.

D.
.
3
4
12
Câu 107. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.
D. 72.
Câu 108. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 91cm3 .
D. 48cm3 .
1 − n2
Câu 109. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. 0.
C. .
D. − .
3
2
2

Câu 110. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
S .ABCD là
3
3
3
2a
2a 3
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Trang 8/10 Mã đề 1


Câu 111. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1

A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4



x = 1 + 3t




Câu 112. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
−1
+
2t
x
=
1
+
7t
x = 1 + 3t

















A. 
.
D. 
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y=1+t
y = 1 + 4t .

















z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
z = 1 + 5t
Câu 113. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 3
a3 3
a3 2
a3 6
.
B.
.
C.
.
D.
.
A.
48
48
24
16
Câu 114. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.

C. P = −10.
D. P = 10.
Câu 115. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m ≤ 0.
D. m > − .
A. m ≥ 0.
B. − < m < 0.
4
4

Câu 116. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
Câu 117. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 27.
B. 8.
C. 3 3.
D. 9.
Câu 118. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Câu 119. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2
Câu 120. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (4; +∞).

D. m =

1 + 2e
.
4e + 2

D. (−∞; 6, 5).

Câu 121. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 68.
B. 34.
C.
.
D. 5.
17
Câu 122. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 123. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
6
2
1


Câu 124. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).

D. D = R \ {1}.
Trang 9/10 Mã đề 1


x+2
bằng?
x
B. 3.
cos n + sin n
Câu 126. Tính lim
n2 + 1
A. 0.
B. −∞.
Câu 125. Tính lim
x→2
A. 1.

C. 0.

D. 2.

C. 1.

D. +∞.


Câu 127. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −3.
C. m = 0.

D. m = −1.

Câu 128. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
Câu 129. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. 10.

D. 30.

Câu 130. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

5.

D

6. A

7.

D

8.

9.


B

11.

10.

C
D
D
B

12.

C

13. A

C

14. A

15.

B

16.

17.

B


18. A

D

19. A

20.

21. A

22.

D
D

24.

C

25.

26.

C

27.

28.


C

29. A

30.

C

31.

32.

C

33.

34.

C

35. A

36.

D

37.

38.


D

39. A

40.

D

41.

44.

C

45.

B

C
B
D
C
D
B

47. A

48. A

49.


50.

B

51.

52.

B

53. A

54. A

C
D

55.

56.
58.

B

43.

42. A
46.


C

C

57.

C
B

59.

D
B

60.

C

61. A

62.

C

63.

B

65.


B

64.

D

66. A
68.

67. A
69.

B
1

D


70.
72.

D

C

71.
73.

B
D


74.

D

75.

B
B

76.

B

77.

78.

B

79.

80.

B

81.

C


83.

C

82. A
84.

85.

C
D

86.

87.

88. A

89.

90. A

91. A

92.

B

93.


94.

B

95. A
D

96.

D

97.

D
B
C
D
B

99.

98. A

D

100.

C

101.


C

102.

C

103.

C

105.

C

107.

C

104.

B

106. A
108.

109.

B


110.
112.

D
B

111.

B

113.

B

115.

114. A
116.

C

118. A
120.

D

B

D


117.

C

119.

C

121.

C

122. A

123.

D

124. A

125.

D

126. A

127. A

128. A


129.

130.

D

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×