Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (407)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.2 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3
3
3

a
a
a
5
15
6
A. a3 6.
B.
.
C.
.
D.
.


3
3
3
Câu 2. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
D. (0; +∞).
1
Câu 3. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 4. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 3.
C. 2 2.
D. 2.
1 − xy
Câu 5. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y

Pmin của P = x√+ y.



9 11 + 19
2 11 − 3
18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9
Câu 6. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 6
a3 6
a3 3
A.
.
B.

.
C.
.
D.
.
8
48
24
24
Câu 7. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích khối

√ chóp S .ABCD là 3 √
3

a 3
a3 3
2a 3
3
.
C.
.
D.
.
A. a 3.
B.
3
6
3
Câu 8. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4
4
1
Câu 9. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
y
0
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 10. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 11. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.

B. 12.
C. 27.
D.
.
2
Câu 12. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. 4.
D. −4.
Câu 13. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. 1.

D. e.
Trang 1/10 Mã đề 1


Câu 14. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
12
12
4
6
2

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. 2 .
C. 3 .
A. 3 .
2e
e
e

D.

1
√ .
2 e


0 0 0 0
0
Câu 16.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2
Câu 17. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 12.
C. 30.
D. 20.

Câu 18. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2


A. 4.

B. −1.

C. 2.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 6.

d = 120◦ .
Câu 19. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 2a.
B. 4a.

C. 3a.
D.
2
Câu 20. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

Câu 21. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6

6
36
Câu 22. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B.
.
C. a 3.
D. a 2.
3
2
Câu 23. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 11 cạnh.
Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



b a2 + c2

abc b2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B. 2 13.
C.
.
D. 26.
13
Câu 26. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.

B. x = −5.
C. x = 0.
D. x = −2.
Câu 27. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
Trang 2/10 Mã đề 1


Câu 28. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −2.
C. −7.
D. −4.
27
log 2x

Câu 29. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 2 log 2x
1
1 − 4 ln 2x
A. y0 = 3
.

B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
x
2x ln 10
2x3 ln 10
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
log(mx)
Câu 31. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
!2x−1
!2−x
3
3



Câu 32. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (−∞; 1].
C. (+∞; −∞).
D. [1; +∞).
Câu 33. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. (4; +∞).

Câu 34. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 35. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 36. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

C. 8.


D. 12.

Câu 37. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
3
4
2

3
−1
x−2 y+2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
2
2
1 1
1
1
Câu 38. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 39. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .

C. a.
D. .
2
2
3
Câu 40. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 41. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
2
−2
C. M = e − 2; m = e + 2.
D. M = e−2 − 2; m = 1.
Câu 42. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Trang 3/10 Mã đề 1


1
Câu 43. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).

D. (1; 3).
Câu 44. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 45. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .
1 − n2
Câu 46. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. .
D. 0.
A. .
3
2
2

Câu 47. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
D. m , 0.
Câu 48. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.

D. 2.

Câu 49. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 9.

D. 13.
d = 60◦ . Đường chéo
Câu 50. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3

A.
D.
.
B.
.
C. a 6.
.
3
3
3
Câu 51. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Z 3
a
x
a
Câu 52. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
Câu 53. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

Câu 54. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.

C. 4.

D. 2.

C. y0 = 1 − ln x.

D. y0 = 1 + ln x.


Câu 55. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.
Trang 4/10 Mã đề 1


Câu 56. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một hoặc hai.
C. Có hai.
D. Có một.
Câu 57. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
Câu 58. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 2e + 1.
C. 2e.
A. .
e

D. 1 − sin 2x.

D. 3.


Câu 59. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
4
2
8
log2 240 log2 15
Câu 60. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
D. 1.
Câu 61. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 62. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 63. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 64. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
2

Câu 65. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 6.

D. 5.

Câu 66. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.

B. (−∞; 1).
C. (2; +∞).

D. (0; 2).

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.

Câu 68. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.

C. V =
.
D. V =
.
3
6
2
6
Câu 67. [4] Xét hàm số f (t) =

9t

Trang 5/10 Mã đề 1


Câu 69. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 6, 12, 24.
A. 2, 4, 8.
B. 8, 16, 32.
C. 2 3, 4 3, 38.

x2 + 3x + 5
Câu 70. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .

B. − .
C. 0.
D. 1.
4
4
x+2
bằng?
Câu 71. Tính lim
x→2
x
A. 0.
B. 3.
C. 2.
D. 1.


Câu 72. [12215d] Tìm m để phương trình 4 x+
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 4.2 x+


1−x2

− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

9
D. 0 ≤ m ≤ .
4

Câu 73. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
2

4
12
9
Câu 74. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

C. 4.

D. 8.

d = 300 .
Câu 75. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

3a 3
a3 3
3
3
.
B. V = 6a .
C. V = 3a 3.
.
A. V =
D. V =
2

2
log(mx)
Câu 76. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 77. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối lập phương.

Câu 78. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

D. Khối 12 mặt đều.

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 79. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
x−3 x−2 x−1
x
Câu 80. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2).
Câu 81. Các khẳng định nào sau đây là sai?

!0
Z
Z
Z
A.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
Trang 6/10 Mã đề 1


[ = 60◦ , S O
Câu 82. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57

A.
.
B. a 57.
C.
.
D.
.
17
19
19
Câu 83. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

C. 0.

Câu 84. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 6 mặt.

D. 2.

D. 9 mặt.

Câu 85. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
.
B. P = 2i.
C. P =
.
D. P = 2.
A. P =
2
2
x
Câu 86.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.
B. 1.
C. .
D. .
A.
2
2
2

Câu 87. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20

C 20 .(3)30
C 40 .(3)10
C 10 .(3)40
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 88. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 4.
D. 10.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 89. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
Z 2
ln(x + 1)
Câu 90. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 3.
B. 0.
C. 1.
D. −3.
2n − 3
Câu 91. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 92. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 93. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 94. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1

C. lim k = 0 với k > 1.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n
Trang 7/10 Mã đề 1


Câu 95. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
.
B. un =
.
A. un =
2
(n + 1)
5n + n2
5
Câu 96. Tính lim
n+3
A. 3.
B. 1.

C. un =

n2 − 3n
.

n2

C. 2.

D. un =

n2 − 2
.
5n − 3n2

D. 0.

Câu 97. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 98. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.
D. 10 mặt.

Câu 99. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
Câu 100. Khối đa diện đều loại {4; 3} có số đỉnh

A. 10.
B. 6.

C. 8.

D. 4.

Câu 101. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
Câu 102. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 30.
D. 20.
x
x+1
x−2 x−1
Câu 103. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (−3; +∞).
B. (−∞; −3).
C. [−3; +∞).
D. (−∞; −3].
Câu 104. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 105. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 106. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 107. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 3.
C. 27.


D. 10.

Câu 108. Tứ diện đều thuộc loại
A. {3; 4}.
B. {4; 3}.

D. {3; 3}.

C. {5; 3}.

Trang 8/10 Mã đề 1


[ = 60◦ , S A ⊥ (ABCD).
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
.
B. a 3.
C.
.
D.
.
A.
12

4
6
mx − 4
Câu 110. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 111. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 5%.
D. 0, 6%.
log7 16
Câu 112. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −4.
B. −2.
C. 2.
D. 4.
Câu 113. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.

C. y(−2) = −18.
D. y(−2) = 6.
Câu 114. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng BD và S C bằng


a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
3
2
6
Câu 115. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 116. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
.
C. 8 3.
.
B.
D.
A. 6 3.
3
3
Câu 117. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + 3.
C. T = 4 + .
D. T = e + .
e
e

2
Câu 118.
√ Xác định phần ảo của số phức z = ( 2 + 3i)

A. 6 2.

B. 7.
C. −6 2.
D. −7.
Câu 119. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 120. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 121. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 12.

D. 6.

Câu 122. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
5
8
7
; 0; 0 .

C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Trang 9/10 Mã đề 1


Câu 123. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.


4n2 + 1 − n + 2
bằng
Câu 124. Tính lim
2n − 3
3
A. +∞.
B. .
2
2−n
Câu 125. Giá trị của giới hạn lim
bằng
n+1
A. 2.

B. 1.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

C. 2.

D. 1.

C. 0.

D. −1.

Câu 126. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−1; 1).

Câu 127. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
B.
.

C.
.
D.
.
A. 2



a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 128. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.
Câu 129. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

! x3 −3mx2 +m
1
Câu 130. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

D

2.

B

3.

D

4.

B

5.

B

7.

D

9.

C

11. A


C

8.

C

10.

C

12. A

13.
15.

6.

D

14. A
16.

B

17.

D

18. A


19.

D

20.

21. A
23.

22.

C
C
B

24.

B

C

25.

C

26. A

27.

C


28.

B

30.

B

29. A
31.

B

33.
35.

C
B

D

34.

D

36. A

37.


D

39.

32.

38.
40.

C
D

41.

C
B
D

42.

43. A

44. A

45.

D

46.


B

47.

D

48.

B

49. A

50.

51.

B

52.

53.

B

54.

55.

B


56.

57.

B
D
B
D

58.

C

59. A

60.

61.

C
D

62.

C

63.

D


64.
66.

65. A
67.

C

B

68. A
1

B
D


69.

D

70.

71.

C

72. A

73.


C

74. A

75. A

76.

77. A

78. A

79.

80.

C

81. A

D

84.

85.

D

86.


D
C
D

93.

D

D
D

100.

103.

D

105. A
B
C

111. A

C

102.

B


104.

B

106.

B

108.

D

110.

D

112. A

113.

114.

C

115. A
117.

92.

98. A


B

109.

D

96.

101. A

107.

90.
94. A

B

97.
99.

B

88. A

B

89.

95.


B
D

D

91.

C

82.

83.
87.

B

D

116. A
118. A

B

119.

C

120.


C

121.

C

122.

C

123. A
125.
127.
129.

D
B
D

2

124.

D

126.

D

128.


D

130.

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×