Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (76)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.25 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 2. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
Câu 3. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

1
= 0.
n


lim qn = 0 (|q| > 1).

3i lần lượt l√

Phần thực là √2 − 1, phần ảo là √3.
Phần thực là 2, phần ảo là 1 − 3.

B. lim

D.

Câu 4. Phần thực và phần
√ ảo của số phức
√ z= 2−1−
B.
A. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D.

Câu 5. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −1.
C. m = −2.

D. m = 0.

Câu 6. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.

C. y(−2) = 22.
D. y(−2) = 2.
3

Câu 7. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.

Câu 8. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .

B. aα bα = (ab)α .

C. aα+β = aα .aβ .

D.
2

α

= aβ .
β
a

2


sin x
Câu 9. [3-c] Giá trị nhỏ nhất và √giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√= 2
√ lượt là
A. 2 và 3.
B. 2 2 và 3.
C. 2 và 2 2.
D. 2 và 3.

Câu 10. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.

D. −2.

Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
a3 3
a3 3
a3 6
a3 2
A.
.
B.
.

C.
.
D.
.
24
48
48
16
Câu 12. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.
D. 0.
1 − xy
Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =

.
9
21
3
9
Trang 1/11 Mã đề 1


!
3n + 2
2
Câu 14. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
Câu 15. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



2a3 3
4a3 3
5a3 3
a3 3
.

B.
.
C.
.
D.
.
A.
2
3
3
3
2
Câu 16. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
Câu 17. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là


a3 2
a 3
a3 3
a3 3
A.
.

B.
.
C.
.
D.
.
12
12
6
4
Câu 18. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
 π π
3
Câu 19. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 20. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2

D. 6.


Câu 21. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 22. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

Câu 23. Thập nhị diện đều (12 mặt đều) thuộc loại

A. {3; 4}.
B. {5; 3}.
C. {3; 3}.
1
Câu 24. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.

D. {4; 3}.

D. 2.

Câu 25. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích

2
2
2
2
a 7
a 2
a 5
11a

A.
.
B.
.
C.
.
D.
.
8
4
16
32

Câu 26. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. (1; 2).
C.
;3 .
D. [3; 4).
2
2
Câu 27. Hàm số y =
A. x = 2.


x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 3.

C. x = 1.

D. x = 0.
Trang 2/11 Mã đề 1


Câu 28. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 1.
D. T = e + 3.
e
e
Câu 29. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 30. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 2.

C. 0, 5.
D. 0, 3.


4n2 + 1 − n + 2
Câu 31. Tính lim
bằng
2n − 3
3
A. +∞.
B. 1.
C. .
D. 2.
2
Câu 32. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
40
20
20
10
C50
C50
C50
C50
.(3)10
.(3)30
.(3)20
.(3)40

.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 33. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
.
B.

.
C.
.
D.
.
A.
24
12
36
6
Câu 34. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 35. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 36. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.

C. Chỉ có (I) đúng.


D. Chỉ có (II) đúng.

Câu 37. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 2.

C. 3.

D. 0.
Trang 3/11 Mã đề 1




x2 + 3x + 5
Câu 38. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. − .
A. .
4
4

x−2
Câu 39. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
C. 2.
3
Z 2
ln(x + 1)
Câu 40. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 0.

D. 1.

D. 1.

D. 1.

Câu 41. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 7 3.

B. 8 2.
C. 16.
D. 8 3.
Câu 42. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 12.

D. 20.

Câu 43. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 1.
B. Vô nghiệm.
C. 2.
x

x

x

D. 3.

Câu 44. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 = .
B.

.
C. y0 =
.
D. y0 =
.
x
10 ln x
x ln 10
x
Câu 45. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Thập nhị diện đều. C. Tứ diện đều.
D. Nhị thập diện đều.
1
Câu 46. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3, m = 4.
D. m = −3.
Câu 47. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối tứ diện đều.

Câu 48. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ

ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
B. a .
C.
.
D.
.
A.
3
6
2
Câu 49. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = ln 10.
ln 10
Câu 50. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e4 .
D. 2e2 .

2n − 3
Câu 51. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 52. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −7.
D. −5.
Z 3
x
a
a
Câu 53. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 16.
D. P = 28.
Trang 4/11 Mã đề 1



[ = 60◦ , S O
Câu 54. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


a 57
a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
19
17
19

Câu 55. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
a 6
a3 2

a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
18
6
6
36
Câu 56.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

1
dx = ln |x| + C, C là hằng số.
x

B.
Z
D.


xα dx =

xα+1
+ C, C là hằng số.
α+1

0dx = C, C là hằng số.

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 57. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
2−n
Câu 58. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.
D. 2.
5
Câu 59. Tính lim
n+3
A. 3.

B. 2.
C. 1.
D. 0.
2
3
7n − 2n + 1
Câu 60. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. 0.
C. .
D. - .
3
3
Câu 61. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.


D. Cả hai câu trên sai.

[ = 60◦ , S A ⊥ (ABCD).
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là

a3 3
a3 2
a3 2
3
A.
.
B.
.
C. a 3.
D.
.
4
6
12
Câu 63. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.


Câu 64. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.

Câu 65. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
1
Câu 66. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Trang 5/11 Mã đề 1


Câu 67. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 10 mặt.
Câu 68. Phát biểu nào sau đây là sai?
1

A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).

D. 4 mặt.

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

Câu 69. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 70. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. .
C. −2.
D. − .
2
2
log √a 5
Câu 71. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng


1
B. 25.
C. 5.
D. .
A. 5.
5
√3
Câu 72. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
B. − .
C. −3.
D. 3.
A. .
3
3
Câu 73. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B.
.
C. 18.
D. 12.
2
Câu 74. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2

giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
x−1
Câu 75. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 2.
C. 6.
D. 2 3.
Câu 76. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = x + ln x.

C. y0 = 1 + ln x.

D. y0 = 1 − ln x.

Câu 77. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R \ {1; 2}.
C. D = R.
D. D = (−2; 1).

2x + 1
Câu 78. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. .
D. 2.
2
Câu 79. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
2

Câu 80. Khối đa diện đều loại {5; 3} có số đỉnh

A. 8.
B. 20.

C. 30.

D. 12.

Câu 81. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Trang 6/11 Mã đề 1


0 0 0 0
0
Câu 82.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.

D.
.
2
2
3
7
Câu 83. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 72.
D. 7, 2.

Câu 84. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
3

Câu 85. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e2 .




D. e5 .


− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
1
Câu 87. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Câu 86. [12215d] Tìm m để phương trình 4 x+
3
B. m ≥ 0.
A. 0 < m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 88. Giá trị của lim(2x2 − 3x + 1) là
x→1


C. +∞.

D. 0.

Câu 89. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 10.

D. 20.

Câu 90.
có nghĩa
√ Biểu thức nào sau đây không
−3
−1
A.
−1.
B. 0 .

C. (−1)−1 .


D. (− 2)0 .

A. 1.

B. 2.


Câu 91. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
3
25
5
25
Câu 92. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 93. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = 0.


D. x = −5.

Câu 94. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 95. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 7/11 Mã đề 1



C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
x−3
bằng?
Câu 96. [1] Tính lim
x→3 x + 3
A. 1.
B. 0.

C. +∞.

D. −∞.

Câu 97. Cho z là nghiệm của phương trình x + x + 1 = 0. Tính P =√z + 2z − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Câu 98. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.

2

4

3

Câu 99. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .
D. a.
2
2
3
Câu 100. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
Câu 101. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 20.

C. 8.


D. 12.

Câu 102. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 120 cm2 .
D. 160 cm2 .


Câu 103.
√ Tìm giá trị lớn nhất của
√ hàm số y = x + 3 + 6 − x

B. 2 3.
C. 3.
D. 2 + 3.
A. 3 2.
1 − n2
Câu 104. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. .
C. − .
D. 0.
A. .

2
3
2
Câu 105. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.
C. 12.
D. 8.
Câu 106. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
4
2
12

9
1
Câu 107. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 108. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A.
.
B. − .
C.
.
D. −
.
25
16
100
100
Câu 109. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 110. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.

D. Năm mặt.

Câu 111. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.

D. 2.
Trang 8/11 Mã đề 1


Câu 112. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
.
B. .
A.
n
n

1
C. √ .
n

D.


n+1
.
n

Câu 113. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 114. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3

−2
−1
x y−2 z−3
x−2 y+2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
.
D.
=
=
.
C. = =
1 1
1
2
3
4

cos n + sin n
Câu 115. Tính lim
n2 + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 116. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 2400 m.
D. 6510 m.
Câu 117. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.

D. Ba mặt.

Câu 118. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −5.
B. −15.
C. −12.
D. −9.
Câu 119. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

Câu 120. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
x+1
bằng
Câu 121. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. .
4
3
Câu 122. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
Câu 123. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

D. (4; +∞).

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

C. 3.

D. 1.


C. {3; 4}.

D. {3; 3}.

C. 5.

D. 3.

Câu 124. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
4a3 3
4a3
2a3 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
log2 240 log2 15

Câu 125. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. −8.
D. 1.
Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



c a2 + b2
abc b2 + c2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
Trang 9/11 Mã đề 1


Câu 127. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 128. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m = 0.

D. m , 0.

Câu 129. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log 14 x.
C. y = log π4 x.

D. y = loga x trong đó a =


3 − 2.

Câu 130. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng




20 3
14 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
D

3.
C

5.

2.


C

4.

C

6. A

7.

B

8.

D

9.

B

10.

D

11.

B

12.


D

13.

14. A

C

15. A

16. A

17.

B

18. A

19.

B

20. A
22.

21. A
23.

D


24. A

B

25. A

C

26.

27.

C

28.

D

29.

C

30.

D

31.

B


32.

D

33.

B

34.

D

36.

D

35. A
37.

B

38.
D

39.
41.

40. A
42. A


C

43. A
45.

B

47.

D

46.

C
D
B

52. A
56.

57.

B

58. A

C

59.


D

54.

B

55. A

61.

C

50.

51. A
53.

44.
48.

C

49.

C

D

60.


D

62. A

B

64. A

65.

C

66.

D

67.

B

68.

D

69.

B

1



70.

71.

C

72. A

73.

74. A

75.

76.
80.

C
D

77.

C

78.

B


D

C

79. A
81.

B

D

82.

C

83. A

84.

C

85.

86.

C

87.

B


89.

B
B

88.

D

90.

B

91.

92.

B

93. A

94.

D

95.

C


96.

B

97. A

98.

B

99.

100.

D

101.

102.

D

103. A

D
D
B

104.


C

105.

106.

C

107.

C

109.

C

111.

C

113.

C

115.

C

D


108.
110.

C

112.

D

114.

C

116.

D

118.

117. A
119.

C

120.

D

121. A


122.

D

123.

124.

125.

B

126.

D

127. A

128.

D

129. A

130.

B

B


2

B
B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×