TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
Z
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
Câu 1. Cho
A.
1
.
2
0
B.
1
.
4
C. 0.
D. 1.
Câu 2. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
Câu 3. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. Câu (II) sai.
D. Khơng có câu nào
sai.
C. 10.
D. 6.
Câu 4. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
√
Câu 5. Thể tích của khối lập phương có cạnh bằng a 2
√
√
C. V = a3 2.
A. V = 2a3 .
B. 2a3 2.
Câu 6. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 12.
√
2a3 2
D.
.
3
D. 20.
Câu 7. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 8. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 9. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).
D. (1; −3).
Câu 10. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 11. Tính lim
x→+∞
A. 2.
x−2
x+3
B. 1.
C. −3.
2
D. − .
3
Trang 1/10 Mã đề 1
Câu 12. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 13. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đơi.
Câu 14. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
6
36
12
Câu 15.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
mx − 4
Câu 16. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 26.
C. 67.
D. 45.
Câu 17.
! định nào sau đây là sai?
Z Các khẳng
0
f (x)dx = f (x).
A.
Z
C.
f (x)dx = F(x) +C ⇒
Z
B.
Z
f (u)dx = F(u) +C. D.
Z
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
ln2 x
m
Câu 18. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 19. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 20. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
Câu 21. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trang 2/10 Mã đề 1
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Cả hai câu trên đúng. C. Cả hai câu trên sai.
D. Chỉ có (I) đúng.
Câu 22. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
B. 1.
C. .
D.
.
A. .
2
2
2
Câu 23. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 24. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
! x3 −3mx2 +m
1
Câu 25. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 26. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 27. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 28. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
24
6
12
Câu 29.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
1
5
4
5
A.
.
B.
.
C.
.
D. − .
3
3
e
3
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. (−3; +∞).
Câu 30. [4-1212d] Cho hai hàm số y =
Câu 31. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 32. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 33. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.
B. 2.
C. −1.
D. 6.
2
Câu 34. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
Trang 3/10 Mã đề 1
Câu 35. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
1
Câu 36. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 37. Tính lim
x→5
A. −∞.
x2 − 12x + 35
25 − 5x
2
B. − .
5
C.
2
.
5
D. +∞.
4
Câu 38. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
7
5
A. a 8 .
B. a 3 .
C. a 3 .
√3
a2 bằng
2
D. a 3 .
Câu 39. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
Câu 40. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 3.
D. 12.
x = 1 + 3t
Câu 41. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t
A.
.
C.
D.
y = −10 + 11t . B.
y=1+t
y = 1 + 4t .
y = −10 + 11t .
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 42. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
tan x + m
nghịch biến trên khoảng
Câu 43. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (II).
C. (I) và (III).
Câu 45. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.
Câu 46. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+2
c+2
c+1
D. (II) và (III).
D. 1.
D.
3b + 2ac
.
c+3
Trang 4/10 Mã đề 1
Câu 47. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.
Câu 48. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
C. lim k = 0.
D. lim = 0.
n
n
Câu 49. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 14 năm.
D. 10 năm.
√
Câu 50. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
6
2
Câu 51. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
1 − 2n
n2 − 3n
.
B. un =
.
C. un =
.
D. un =
.
A. un =
2
2
2
n
5n − 3n
(n + 1)
5n + n2
Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
.
D.
.
B. a 3.
C.
2
3
Câu 53. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 54. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m ≥ 0.
D. m > 1.
Câu 55. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√ đều ABI có hai đỉnh A, √
B. 2 3.
C. 2.
D. 2 2.
A. 6.
Câu 56. [3-1214d] Cho hàm số y =
Câu 57. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
1
Câu 58. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
2
2
Câu 59. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
Trang 5/10 Mã đề 1
√
Câu 60. Tính lim
A. 1.
√
4n2 + 1 − n + 2
bằng
2n − 3
B. 2.
C. +∞.
D.
3
.
2
Câu 61. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −2.
C. −7.
D. −4.
A.
27
Câu 62. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối 20 mặt đều.
d = 30◦ , biết S BC là tam giác đều
Câu 63. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
26
16
Câu 64. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 6
a3 15
a3 5
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 65. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C.
.
D. a 6.
A.
2
6
3
2x + 1
Câu 66. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. −1.
C. 2.
D. .
2
Z 2
ln(x + 1)
Câu 67. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 3.
D. 0.
log2 240 log2 15
Câu 68. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. −8.
C. 1.
D. 3.
Câu 69. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.
D. Ba mặt.
Câu 70. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 3, 5 triệu đồng.
D. 20, 128 triệu đồng.
Câu 71. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (II) đúng.
Câu 72. [2] Tổng các nghiệm của phương trình 3
A. 2.
B. 5.
C. Cả hai đều đúng.
D. Chỉ có (I) đúng.
x2 −4x+5
= 9 là
C. 4.
D. 3.
Trang 6/10 Mã đề 1
Câu 73. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.
C. 20.
D. 8.
d = 300 .
Câu 74. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3
√
3a 3
a 3
A. V =
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
2
2
Câu 75. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 76. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 12.
D. 6.
Câu 77. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
2n + 1
Câu 78. Tính giới hạn lim
3n + 2
1
2
3
B. .
C. 0.
D. .
A. .
2
2
3
Câu 79. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
!
1
1
1
Câu 80. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 2.
D. 1.
2
un
Câu 81. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. +∞.
D. 0.
x+2
Câu 82. Tính lim
bằng?
x→2
x
A. 3.
B. 2.
C. 0.
D. 1.
Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 84. Tính lim
A. 1.
2n − 3
bằng
+ 3n + 1
B. 0.
2n2
D. +∞.
C. −∞.
Câu 85. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
Trang 7/10 Mã đề 1
ln x p 2
1
Câu 86. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
3
9
3
9
Câu 87. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
B.
.
C.
.
D.
.
A. a3 3.
2
4
2
x−3 x−2 x−1
x
Câu 88. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (2; +∞).
D. (−∞; 2].
Câu 89. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
4a3 3
5a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
Câu 90. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
π
Câu 91. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
e .
B. 1.
C.
e .
D. e 3 .
A.
2
2
2
3
Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.
D. e5 .
Câu 93. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 94. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
Câu 95. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
23
1079
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 96.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Trang 8/10 Mã đề 1
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
4a3 3
2a3 3
a3
.
B.
.
C.
.
D.
.
A.
6
3
3
3
Câu 98. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2
Câu 99. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n
C.
sin n
.
n
D. −6.
D.
n+1
.
n
Câu 100. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
Câu 101. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 102. Biểu thức nào sau đây√khơng có nghĩa
−3
A. 0−1 .
B.
−1.
D. (−1)−1 .
√
C. (− 2)0 .
Câu 103. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 104. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 105. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 1.
C. 2.
D. 6.
1
Câu 106. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
d = 120◦ .
Câu 107. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.
B. 2a.
C.
2
Câu 108. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m ≥ 3.
D. m > 3.
Câu 109. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
Câu 110. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 8 3.
B. 6 3.
C.
.
D.
.
3
3
1
Câu 111. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
Câu 112. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.
C. 11 cạnh.
D. 9 cạnh.
Trang 9/10 Mã đề 1
Câu 113. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
4a3 3
2a3 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 114. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
[ = 60◦ , S A ⊥ (ABCD).
Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a3 2
a 3
3
A.
D.
.
B.
.
C. a 3.
.
4
6
12
Câu 116. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.
D. m = −2.
2
x
Câu 117. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 0.
D. M = e, m = 1.
e
e
Câu 118. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = loga 2.
log2 a
loga 2
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 119. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A. 2017.
B.
.
C.
.
D.
.
2018
2018
2017
Câu 120. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −10.
D. P = −21.
Câu 121. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
a3
a3 3
a3 3
.
B.
.
C.
.
D. a3 .
A.
6
3
2
Câu 122. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
Câu 123. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√ là
√
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
log 2x
Câu 125. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 126. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.
C. 6.
D. 4.
Trang 10/10 Mã đề 1
Câu 127. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B. a 3.
C. a 6.
D.
A. 2a 6.
.
2
1 − 2n
Câu 128. [1] Tính lim
bằng?
3n + 1
2
1
2
C. − .
D. .
A. 1.
B. .
3
3
3
Câu 129. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 9.
B. 27.
C. 8.
D. 3 3.
Câu 130. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − .
B. − 2 .
C. −e.
e
e
D. −
1
.
2e
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
1. A
D
3.
5.
4.
B
7.
D
B
6. A
C
8.
C
C
9.
B
10.
11.
B
12.
13.
B
14.
15. A
B
D
16. A
17.
18. A
C
19.
B
20.
B
21.
B
22.
B
23.
B
24.
C
26.
C
D
25.
28.
C
27.
29. A
30.
31.
C
B
32. A
33. A
34.
35. A
36.
37.
D
D
C
38.
C
39. A
D
40.
C
41.
D
42.
43.
D
44.
B
46.
B
48.
B
45. A
47.
49.
C
D
50. A
B
51.
D
52.
C
53.
B
54.
B
55.
B
56.
B
57.
B
58.
59.
61.
60. A
C
62.
B
B
64.
63. A
65.
C
D
66.
B
67. A
68.
1
C
B
70.
C
69.
71.
B
72.
73.
B
74. A
75.
77.
D
D
C
C
76.
B
78.
D
D
79.
D
80.
81.
D
82.
B
84.
B
B
C
83.
85.
B
86.
87.
B
88. A
89. A
90.
C
91.
C
92.
D
93.
C
94.
D
96.
D
D
95.
97.
98. A
C
99.
D
100.
101. A
102. A
103.
C
104.
D
105.
107.
109.
C
C
110.
B
112.
B
C
116.
117.
C
118.
119.
C
120.
121.
C
122.
123.
C
124.
129.
C
114.
115. A
127.
D
108.
B
113.
B
106.
111. A
125.
C
B
C
D
C
D
B
D
126.
C
128.
C
130.
2
D
D