Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (711)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.87 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1
Câu 1. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.

! x3 −3mx2 +m
nghịch biến trên khoảng
D. m , 0.

Câu 2. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
A. 4.
B. 8.
C. 6.
D. 3.
Câu 3. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.


.
C. 27.
D. 18.
2
Câu 4. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S√H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD là

2a3 3
2a3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
12 + 22 + · · · + n2
Câu 5. [3-1133d] Tính lim
n3
1
2
C. +∞.

D. .
A. 0.
B. .
3
3
Câu 6. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 12.
D. 20.
3

Câu 7. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .

D. e2 .

Câu 8. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =

.
A. m =
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy
(ABC) một
góc bằng 60◦ . Thể tích√khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
4
12
Câu 10. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.

C. 1.
D. Vô nghiệm.
1 + 2 + ··· + n
Câu 11. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. Dãy số un khơng có giới hạn khi n → +∞.
2
C. lim un = 0.
D. lim un = 1.
1
Câu 12. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).



x=t




Câu 13. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
Trang 1/10 Mã đề 1


9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
9
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
4

9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
9
2
2
2
D. (x − 3) + (y − 1) + (z − 3) = .
4

Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 15. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
B. 1.
C. .
D.
.
A. .
2
2
2
[ = 60◦ , S A ⊥ (ABCD).
Câu 16. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

3
3

a 2
a 2
a3 3
3

B.
A. a 3.
.
C.
.
D.
.
12
4
6
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 17. Tìm m để hàm số y =
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Câu 18. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!

un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a
a 2
A.
.
B. .
C. .
D.
.
3
4
3
3
Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 20. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3

3
4a 3
2a 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Câu 21. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
ln 10

D. f 0 (0) = 10.

Câu 22. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng

5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 2, 25 triệu đồng.
Câu 23. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.
Trang 2/10 Mã đề 1


Câu 24. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log √2 x.
C. y = log 14 x.

D. y = loga x trong đó a =


3 − 2.

Câu 25. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có vơ số.

D. Có hai.
Câu 26. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vơ nghiệm.
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2
B. −8.
C. 1.

D. 1 nghiệm.

Câu 27. [1-c] Giá trị biểu thức
A. 3.

D. 4.

Câu 28. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −2.
B.
.
C. −4.
D. −7.
27
q
Câu 29. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i

h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
!x
1
Câu 30. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. − log3 2.
C. − log2 3.
D. log2 3.
Câu 31. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 4.
D. V = 5.
Câu 32. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 2.


Câu 33. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

C. 1.

D. 3.

C. D = R.

D. D = (0; +∞).

Câu 34. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
12
24
6
Câu 35. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].

B. D = (−2; 1).
C. D = R \ {1; 2}.
D. D = R.
log(mx)
Câu 36. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
2

Trang 3/10 Mã đề 1


Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a 6
a3 3
a3 3
A.
.
B.

.
C.
.
D.
.
16
48
24
48
Câu 38. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 39. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 40. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 41. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng

1
1
D. − .
A. −3.
B. 3.
C. .
3
3
[ = 60◦ , S O
Câu 42. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ A đến (S

a 57
2a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
19
17
19
Câu 43. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.

B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
x+1
Câu 44. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
2
3
6
1 − 2n
Câu 45. [1] Tính lim
bằng?
3n + 1
2
2
1
B. 1.
C. .
D. − .
A. .
3
3

3
Câu 46. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình tam giác.
D. Hình lập phương.
Câu 47. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
a 6
a3 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 48.
Z Trong các khẳng định sau, khẳng định nào sai? Z

1
A.
0dx = C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
x
Z
Z
xα+1
C.
xα dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
Câu 49. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).

3
3
3
Trang 4/10 Mã đề 1


Câu 50. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.

C. 4.

D. 8.

Câu 51. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 8, 16, 32.
D. 2, 4, 8.
A. 6, 12, 24.
B. 2 3, 4 3, 38.
Câu 52. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.

D. 3.

Câu 53. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0

của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
36
24
12
Câu 54. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4
x+2
Câu 55. Tính lim
bằng?
x→2
x
A. 3.
B. 0.
C. 2.
D. 1.
Câu 56. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
3
2
Câu 57. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =

B. −3 − 4 2.
C. 3 − 4 2.
A. 3 + 4 2.


D. −3 + 4 2.

Câu 58. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 59. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
2a
a
B.
.
C.
.
D.
.
A. .
9
9
9

9
2

Câu 60. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.
n−1
Câu 61. Tính lim 2
n +2
A. 0.
B. 1.
C. 2.

D. 2 − log2 3.

D. 3.

Câu 62. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 63. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).

D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.
Trang 5/10 Mã đề 1




Câu 64. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x


A. 2 + 3.
B. 2 3.
C. 3 2.
D. 3.
!

1
1
1
Câu 65. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. +∞.
B. .
C. .
D. 2.
2
2
Câu 66. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 67. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
4
4
Câu 68. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 = .
B. y0 =
.
C.
.
D. y0 =
.
x
x ln 10
10 ln x
x
Câu 69. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±3.
B. m = ±1.
C. m = ± 2.
D. m = ± 3.

Câu 70. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 71. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối lập phương.

Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a 2
a 3
a 3
.
C.

.
D.
.
A. a3 3.
B.
2
4
2
Câu 73. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 74. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.
2x + 1
Câu 75. Tính giới hạn lim
x→+∞ x + 1
A. 2.
B. −1.

C. 6.

1
.
2
Câu 76. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2

A. m = −1.
B. m = −3.
C. m = −2.
Câu 77. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

C.

D. 4.

D. 1.
D. m = 0.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.
Trang 6/10 Mã đề 1


Câu 78. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 79. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 64cm3 .
D. 84cm3 .

Câu 80. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 81. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.

D. 2.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 82. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 83. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.

B. 1202 m.
C. 6510 m.
D. 2400 m.
Câu 84. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. n lần.
D. 3n3 lần.
Câu 85.! Dãy số nào sau đây có giới
!n hạn là 0?
n
5
1
A.
.
B.
.
3
3

!n
4
C.
.
e

!n
5
D. − .
3


Câu 86. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 87. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 88. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng

thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
Trang 7/10 Mã đề 1


Câu 89. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 2.
D. 0, 4.
1

Câu 90. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.

D. D = (−∞; 1).

Câu 91. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 92. Khối đa diện đều loại {3; 5} có số đỉnh

A. 30.
B. 12.

C. 8.

D. 20.

Câu 93. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 94. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
=

.
B. = =
.
A. =
2
3
−1
1 1
1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
1
Câu 95. [1] Giá trị của biểu thức log √3
bằng
10
1

1
C. 3.
D. .
A. −3.
B. − .
3
3
x2 − 12x + 35
Câu 96. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. .
C. − .
D. −∞.
5
5
Câu 97. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. 1.
C. .
D. .
2
2
1

Câu 98. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 1.
D. 2.

2
x + 3x + 5
Câu 99. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 1.
C. − .
D. 0.
4
4
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
√ (S BC) và (S AD) cùng
√hợp với đáy một góc 30
√. Thể tích khối chóp S .ABCD
√ là
3
3

3
8a 3
8a 3
a 3
4a3 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 101. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 5.
C. 7.
D. 9.
!
!
!
x
4
1
2

2016
Câu 102. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 2016.
C. T = 1008.
D. T =
.
2017
Trang 8/10 Mã đề 1


4

Câu 103. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
7
5
A. a 3 .
B. a 3 .
C. a 3 .

√3

a2 bằng
5

D. a 8 .

Câu 104. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. 0.
D. −6.
Câu 105. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 106. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. (2; 2).

Câu 107. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.

D. Ba mặt.

Câu 108. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng

A. −1 + sin x cos x.
B. 1 − sin 2x.
C. −1 + 2 sin 2x.

D. 1 + 2 sin 2x.

Câu 109. Phát biểu nào sau đây là sai?
1
B. lim un = c (un = c là hằng số).
A. lim = 0.
n
1
C. lim k = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 110. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 111. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là


3
3

a3 5
a

6
a
15
A.
.
B. a3 6.
C.
.
D.
.
3
3
3
2
Câu 112. Tính

√ mơ đun của số phức√4z biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 2 5.
Câu 113. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 114. Dãy số nào sau đây có giới hạn khác 0?
1
sin n

A.
.
B. .
n
n

C.

n+1
.
n

1
D. √ .
n

Câu 115. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 116. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.

B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 117. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
a
1
Câu 118. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.
Trang 9/10 Mã đề 1


2mx + 1
1
Câu 119. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 0.
B. 1.
C. −5.

D. −2.
2n + 1
Câu 120. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. .
D. 0.
2
3
2
Câu 121. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vơ nghiệm.
C. 2.
D. 3.
Câu 122. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √


a3 3
5a3 3
2a3 3
4a3 3
A.
.

B.
.
C.
.
D.
.
2
3
3
3
Câu 123. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
C. √
.
D. √
.
.
B. √
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 124. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
2
3
1
Câu 125. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. −1.
D. 2.
1
Câu 126. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.
Câu 127. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.


C. 1.

D. 3.

Câu 128. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 129. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 72.

D. 0, 8.

Câu 130. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

3.

D


4.

5.

D

6.

7. A

8.

9. A

10.

11. A

12.

13.
15.

B

16.

17.


B

18.

19. A

20. A

21. A

22.

23. A

24.

27.

D

B
D
C
D
C
D
C
B

26. A


B

28. A

29.

D

30.

31.

C

32.

33.

C

34. A

35.

D

36.

37.


D

38. A

39.

D

40.

41.

C

14. A

C

25.

D

2.

C

1.

C


C
D
D
C

42.

D
D

43.

D

44.

45.

D

46.

C

48.

C

47.


C

49. A

50.

51. A

52.

C

54.

C

53.

D

55.

56.

C

57.

D


59.

C

61. A
63.

C

65.
67.

D
B

B

58.

D

60.

D

62.

C


64.

C

66.

C

68.
1

B

B


69.

70. A

C

71.

D

72.

73.


D

74. A

75. A
77.

B

79.
81.
85.

78.

C

84.

C

B
D
B
D

86.

B


87.

C

82.

B

83.

76.
80.

C

D

88.

B

90.

B

91. A

92.

B


93. A

94.

B

96.

B

89.

95.

C
B

B

97.

D

99.

100. A

C


101.

D

102.

103. A

104.

105.
107.

B
D

111.

D

C

110.

C
B

114.

115. A


116.

117. A

118.

119. A

120.

121. A

122. A

123.

B

108.
112.

C

113.

C

106. A


C

109.

C

98.

C
B
C
B

124.

C

125. A

D

126. A

127.

B

128.

C


129.

B

130.

C

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×