Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.18 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
C. 2.
D. 3.
A. 1.
B. 5.
2n + 1
Câu 2. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 0.
D. 3.
Câu 3. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 4. Các khẳng
!0 định nào sau đây là sai?
Z


Z
Z
f (x)dx = f (x).
B.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
A.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
 π π
Câu 5. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.

Câu 6. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
D. 36.
Câu 7. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị

của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = 2.
Câu 8. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

f (x) a
= .
x→+∞ g(x)
b
D. lim [ f (x)g(x)] = ab.

B. lim

x→+∞

Câu 9. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?

A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
p
1
ln x
Câu 10. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
3
9
3
9
Câu 11. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích


2
2
2
2
a 7
a 5
a 2
11a
A.
.
B.
.
C.
.
D.
.
8
16
4
32
Trang 1/10 Mã đề 1


Câu 12. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 46cm3 .
C. 72cm3 .
D. 27cm3 .

Câu 13. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 2.
C. 1.
A. .
2
Câu 14. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

D.

ln 2
.
2

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un

= a > 0 và lim vn = 0 thì lim
= +∞.
vn

Câu 15. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 20.

C. 30.

D. 10.

Câu 16. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

C. 12.

D. 8.

Câu 17. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 1134 m.
D. 6510 m.
2

Câu 18. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. 2a 2.
C.
.
D. a 2.
A.
4
2
Câu 19. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. − .
B. −
.
C.
.
D.
.
16
100

25
100
Câu 20. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 5
a3 6
a3 15
3
A.
.
B. a 6.
.
D.
.
C.
3
3
3

Câu 21. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. − .
C. 3.
D. −3.
3

3
9x
Câu 22. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. −1.
D. 2.
2
x
Câu 23.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. 1.
C. .
D. .
2
2
2
log7 16
Câu 24. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30

A. 2.
B. 4.
C. −2.
D. −4.
Trang 2/10 Mã đề 1


Câu 25. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 26. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
C. |z| = 5.
A. |z| = 5.
B. |z| = 5.


D. |z| = 2 5.

1
Câu 27. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.

Câu 28. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

a3 3
a3
a3 3
3
A. a .
B.
.
C.
.
D.
.
9
3
3
Câu 29. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
7n2 − 2n3 + 1
Câu 30. Tính lim 3
3n + 2n2 + 1
7
A. 0.
B. .
3


2
C. - .
3

D. 1.

Câu 31. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.

D. {4; 3}.

Câu 32. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.

C. 2.

D. 4.

Câu 33. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.


Câu 34. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

C. 4.

D. 3.

Câu 35. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
12
24
6
36

Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
x−3

Câu 37. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. +∞.
C. 1.
D. 0.
1
Câu 38. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Trang 3/10 Mã đề 1


Câu 39. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3

.
B. 1.
C. 2.
D. 3.
A.
3
Z 1
Câu 40. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. 1.
D. .
4
2
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 2
a3 3
A.

.
B.
.
C.
.
D.
.
24
48
16
48
1 − 2n
bằng?
Câu 42. [1] Tính lim
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 43. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.
D. 2.

A. 0.

B.

Câu 44. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.
B. − .
C. − 2 .
e
e
Câu 45. [1] Đạo hàm của làm số y = log x là
1
1
1
B. y0 =
.
C.
.
A. y0 = .
x
x ln 10
10 ln x

D. −

D. y0 =

Câu 46. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √

2

A. 4.

B. −1.

3

C. 6.

1
.
2e
ln 10
.
x
Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. 2.
2


x
Câu 47. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 1.
C. M = e, m = 0.
D. M = e, m = .
e
e
Câu 48. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
100.(1, 01)3
A. m =
triệu.
B.
m
=
triệu.
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =

triệu.
D. m =
triệu.
3
(1, 12) − 1
3
Câu 49. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 50. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

2a3
2a3 3
4a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3

3
3
3
Trang 4/10 Mã đề 1


Câu 51. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
Câu 52. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b


Câu 53. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 54. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 55. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. 1.
D. e2016 .
Câu 56. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng

1
.
ln 10
Câu 57. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.

C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
A. f 0 (0) = 10.

B. f 0 (0) = 1.

C. f 0 (0) = ln 10.

D. f 0 (0) =

Câu 58. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 59. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
cos n + sin n
Câu 60. Tính lim
n2 + 1

A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 61. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Trang 5/10 Mã đề 1


Câu 62. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 63. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.

B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 64. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.

D. 10 mặt.

Câu 65. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.

D. y0 = 1 + ln x.

C. y0 = x + ln x.

Câu 66. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

a3 3
a 3
a3 3

a3 2
A.
.
B.
.
C.
.
D.
.
12
6
4
12


x
+
3
+
6 −√x
Câu 67.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y

=


A. 2 3.
B. 3.
C. 2 + 3.
D. 3 2.
Câu 68. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 27.
D. 8.
Câu 69.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
12
4
12 + 22 + · · · + n2
Câu 70. [3-1133d] Tính lim
n3
1

A. .
B. 0.
3


a3 2
C.
.
2


a3 2
D.
.
6

C. +∞.

D.

C. 5.

D. 0.

2
.
3

Câu 71. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 7.

B. 9.

Câu 72. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.
2

D. 6.

d = 30◦ , biết S BC là tam giác đều
Câu 73. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.

.
13
26
16
9
Câu 74.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

Câu 75. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.

B.
Z
D.

dx = x + C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x


C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 76. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
D. 3 mặt.
Câu 77. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vô số.
D. 1.
Trang 6/10 Mã đề 1


Câu 78. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục thực.
C. Đường phân giác góc phần tư thứ nhất.
D. Trục ảo.
Câu 79. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
x+2

bằng?
Câu 80. Tính lim
x→2
x
A. 2.
B. 1.
C. 3.
D. 0.
Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. 2
.
D. √
.
.
C. √
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 82. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.

C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
a
1
Câu 83. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 7.
C. 4.
D. 2.
Câu 84. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 85. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
D. 2e + 1.
e
Câu 86. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.


B. Câu (II) sai.

Câu 87. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khơng có câu nào D. Câu (III) sai.
sai.
C. Khối lập phương.

Câu 88. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. Khối tứ diện đều.
D. 4 mặt.


Câu 89. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. [3; 4).
D. (1; 2).
2

2
q
Câu 90. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Trang 7/10 Mã đề 1


Câu 91. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.

D. 30.

Câu 92. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 93. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =

.
B. y = x + .
2x + 1
x
2n + 1
Câu 94. Tính giới hạn lim
3n + 2
1
2
A. .
B. .
2
3

C. y = x3 − 3x.

D. y = x4 − 2x + 1.

C. 0.

D.

3
.
2

Câu 95. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!

8
5
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
!
x+1
Câu 96. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
.
B.
.
C. 2017.
D.
.
A.
2018
2017

2018
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 98. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.

C. 6.


Câu 99. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).


Câu 100. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2

D. 10.

C. (0; +∞).


D. (−∞; 2).

− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4

− 4.2 x+

1−x2


Câu 101. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C. 7.
D.
.
2
2
Câu 102.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
Z
Z
Z
Z

C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 103. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 1.
C. m ≥ 0.

D. m > 0.

Câu 104. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a

D. lim f (x) = f (a).
x→a

Trang 8/10 Mã đề 1



Câu 105. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
48
8
24
24
0 0 0 0
Câu 106.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương

√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
3
2
2

Câu 107. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.

D. 8 mặt.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.

B. 0.
C. 1.
D. Vô số.
Câu 108. [4] Xét hàm số f (t) =

Câu 109. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
2−n
bằng
Câu 110. Giá trị của giới hạn lim
n+1
A. −1.
B. 2.
C. 0.
D. 1.

Câu 111. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3

A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Câu 112. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
d = 300 .
Câu 113. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
.
D. V =
.

A. V = 6a .
B. V = 3a 3.
C. V =
2
2
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
! x3 −3mx2 +m
1
Câu 115. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 116. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2

Câu 117. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. 6.
D. .
2
2
Trang 9/10 Mã đề 1


Câu 118. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.

D. 1 + 2 sin 2x.

Câu 119. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 3.
D. 0, 5.
Câu 120. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.


C. 30.

D. 20.

3
2
x
Câu 121. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
n−1
Câu 122. Tính lim 2
n +2
A. 3.
B. 0.
C. 2.
D. 1.

Câu 123. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≤ 0.
C. m ≥ 0.
D. m > − .

4
4
Câu 124. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).
Câu 125. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
6
12
12
4
Câu 126.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?

[ f (x) + g(x)]dx =

A.
Z
B.

[ f (x) − g(x)]dx =

f (x)dx +

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

x−1

có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2 2.
B. 2.
C. 2 3.
D. 6.
[ = 60◦ , S A ⊥ (ABCD).
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3
3

a 2
a 2
a
3
A.
.
B.
.
C. a3 3.
D.
.

4
12
6
Câu 129. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 127. [3-1214d] Cho hàm số y =

Câu 130. [1] Hàm số nào đồng
√ biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log π4 x.
D. y = log 14 x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

3.


B

4.

5.

B

6. A

7. A

8.

9.

D

11. A
13.

B

15. A
D

12.

D


14.

D

D

26.

B
C
B

D

37.
C

41.

D

D
B

28.

C

30.


C
C

36.

D

38.

D

40.

D

42.

B
D

44.

43. A
B

47.

46. A
48. A


C

49.

D

50.

51.

D

52.

53.

B

54. A

55.

B

56.

57. A
B


61. A
63.

B

34.

35. A

59.

D

32. A
C

39.

C

24.

B

33.

45.

D


22.

29.
31.

10.

20.

B

25.
27.

B

18.

21. A
23.

C

16. A

17.
19.

B


D
C

58.

D

60.

D

62.
B

C

B

64.

65.

D

66. A

67.

D


68.
1

C
B


69. A
71.

70. A
B

72. A

73. A

74.

75.

B

76.

77.

B

78. A


79.
B

84. A
86.

87.

D

90.

89.

B

93. A

94.

B

95.

B

100.

D

B

101. A

C
B

103. A
105.

D

108. A

109.

110. A

111.

114. A

115.

116. A

117.

118. A


119.
C

121.

122.

B

123.

124.

B

125.

126.

D
C

113.

C

120.

D


107. A

B

112.

D

99. A

104.

D

128. A
130.

B

97.

96. A

106.

C

91.

C


92.

102.

D

82.

85. A

98.

D

80. A

C

81. A
83.

C

B

2

D
C

D
C
B
D
B

127.

C

129.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×