Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (11)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.58 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m ≥ .
D. m > .
4
4
4
4
Câu 2. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
2

Câu 3. [2] Tổng các nghiệm của phương trình 31−x
A. − log2 3.

B. − log3 2.



C. D = (−2; 1).
!x
1
=2+

9
C. 1 − log2 3.

Câu 4. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
Z 1
Câu 5. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

D. D = [2; 1].

D. log2 3.
D. (−1; 1).

0

1
1
A. .
B. .
4
2

Câu 6. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

C. 0.

D. 1.

1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).

Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
D. 2.
B. 26.
C.
A. 2 13.
13
Câu 8. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).


√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 9. Dãy số nào sau đây có giới hạn khác 0?
1
1
n+1
sin n
A. √ .
.
C. .
D.

.
B.
n
n
n
n
Câu 10. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 2
a 5
a 7
A.
.
B.
.
C.
.
D.
.
32
4

16
8
Câu 11. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 12. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Trang 1/11 Mã đề 1


Câu 13. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.

Câu 14. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 15. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √

3
a 6
a 3
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
Câu 16. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. 2
.
D. √
.

A. √
.
C. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 17. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 18. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
Câu 19. Giá trị của lim (3x2 − 2x + 1)

A. +∞.

x→1

B. 3.

C. 2.

D. 1.

Câu 20. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 8.
D. 4.
x+3
nghịch biến trên khoảng
Câu 21. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. Vơ số.
C. 3.
D. 2.
Câu 22. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
x
x
Câu 23. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 3.
B. 27.
C. 10.
D. 12.
Câu 24. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 9.

C. 0.

D. 5.

Câu 25. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =

.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 = x
.
ln 2
2 . ln x
Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
Câu 27. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.

D. −3.
Trang 2/11 Mã đề 1


Câu 28. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.

D. m > 1.

Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.
D. Ba mặt.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 30. [2-c] Cho hàm số f (x) = x
9 +3
1
A. −1.
B. .
C. 1.
D. 2.
2
x−2 x−1
x
x+1
Câu 31. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).

D. (−∞; −3).
Câu 32. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 2.

D. 4.

Câu 33. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.
Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 35. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.

!
!
!
1
2
2016
4x
. Tính tổng T = f
Câu 36. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 2017.
D. T = 1008.
A. T = 2016.
B. T =
2017
Câu 37. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 38. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).

C. (2; +∞).

D. R.

Câu 39. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Câu 40. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 1.

D. 2.
Trang 3/11 Mã đề 1


d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 41. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 3
a3 2
A.
.
B.
.
C.
.
D. 2a2 2.
12
24
24
1
Câu 42. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 2.
C. −1.
D. 1.
d = 60◦ . Đường chéo
Câu 43. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






4a3 6
a3 6
2a3 6
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
Câu 44. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 8%.
C. 0, 5%.
D. 0, 7%.
Câu 45. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 46. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là

A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
Câu 47. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3
a3 15
a3 15
.
B.
.
C.
.
D.
.
A.
5
25
3
25
un
Câu 48. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.

Câu 49. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
mx − 4
Câu 50. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 26.
D. 34.
Câu 51. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. −5.
C. 5.

D. 6.

Câu 52. Giá trị của lim(2x − 3x + 1) là
x→1
A. +∞.
B. 1.

D. 2.

2

2


C. 0.

Câu 53. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 3.
D. 2.
log 2x
Câu 54. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x
2x ln 10
x ln 10

Câu 55. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. 2020.
D. log2 2020.
Z 2
ln(x + 1)
Câu 56. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 0.
D. 3.
Trang 4/11 Mã đề 1


5
Câu 57. Tính lim
n+3
A. 1.

B. 2.

C. 3.

D. 0.

Câu 58. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 59. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C.
; +∞ .
2
2
2

!
1
D. − ; +∞ .
2

Câu 60. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.

D. m , 0.

Câu 61. Cho hai hàm y = f (x), y = g(x)

Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 62. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 63. Khối đa diện đều loại {3; 4} có số mặt

A. 10.
B. 8.

D. 12.
Z 1
6
2
3
. Tính
Câu 64. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
f (x)dx.
0
3x + 1
A. 4.
Câu 65. Tính lim
x→2
A. 1.

B. 6.
x+2
bằng?
x
B. 0.

C. 6.

C. −1.

D. 2.


C. 3.

D. 2.
 π π
3
Câu 66. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 3.
C. 1.
D. −1.

Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.
Câu 69. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.

B. 24.
C. 20.
D. 15, 36.
Trang 5/11 Mã đề 1


Câu 70. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = 4 + .
D. T = e + .
e
e
Câu 71. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 72. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −8.
C. x = 0.


Câu 73. [12215d] Tìm m để phương trình 4 x+
3

3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
4
4

1−x2



− 4.2 x+

1−x2

D. x = −2.
− 3m + 4 = 0 có nghiệm

9
C. m ≥ 0.
D. 0 ≤ m ≤ .
4



x = 1 + 3t




Câu 74. [1232h] Trong không gian Oxyz, cho đường thẳng d : 

y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = −1 + 2t
x = 1 + 7t
x = 1 + 3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .

















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 75. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 76. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
1
bằng
Câu 77. [1] Giá trị của biểu thức log √3
10
1

1
A. − .
B. 3.
C. .
D. −3.
3
3
Câu 78. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).
D. (0; 2).
Câu 79. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Câu 80. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Trang 6/11 Mã đề 1


Câu 81. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
6
12
24
Câu 82. Dãy
!n số nào sau đây có giới
!n hạn là 0?
!n
!n
1
4
5
5

B.
.
C.
.
D.
.
A. − .
3
3
e
3
Câu 83. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 5.
C. 0, 3.
D. 0, 4.
Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
Câu 85. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
x−1

có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 2.
B. 2 3.
C. 2 2.
D. 6.

Câu 86. [3-1214d] Cho hàm số y =

Câu 87. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913

4913
Câu 88. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. .
D. 6.
2
2


4n2 + 1 − n + 2
Câu 89. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 2.
D. 1.
2
π
Câu 90. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.


A. T = 2 3.
B. T = 4.
C. T = 3 3 + 1.
D. T = 2.
Câu 91. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 6 mặt.
C. 4 mặt.

D. 8 mặt.

Câu 92. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

D. Khối bát diện đều.

C. Khối tứ diện đều.

Câu 93. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.

D. {4; 3}.
Trang 7/11 Mã đề 1


Câu 94. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.

B. 1.
C. 3.

D. Vơ nghiệm.

Câu 95. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 96. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 97. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 5.

C. 6.

D. 4.

log3 12


Câu 98. [1] Giá trị của biểu thức 9
bằng
A. 4.
B. 144.
C. 24.
x+1
bằng
Câu 99. Tính lim
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .
4
3
2
2
2
1 + 2 + ··· + n
Câu 100. [3-1133d] Tính lim
n3
1
2
A. .
B. .
C. 0.
3
3
Câu 101. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (4; +∞).
B. [6, 5; +∞).
C. (−∞; 6, 5).

D. 2.

D. 1.

D. +∞.
D. (4; 6, 5].

Câu 102. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 103. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

2a3
4a3
4a3 3
2a3 3
A.
.
B.
.
C.
.

D.
.
3
3
3
3
Câu 104. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 105. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.
D. Khối lập phương.
1
a
Câu 106. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 1.
D. 7.
Câu 107. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.

Câu 108. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 109. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Trang 8/11 Mã đề 1


Câu 110. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. e.

D. 4 − 2 ln 2.
Câu 111. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 112. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

D. aα bα = (ab)α .
A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
a
!
x+1
Câu 113. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035

A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 114. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).
D. [−1; 2).
Câu 115.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z

Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 116. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {3; 5}.

D. {5; 3}.

Câu 117. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
2a3 3
a3
a3
4a3 3

.
B.
.
C.
.
D.
.
A.
3
3
3
6
Câu 119. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 120. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 121. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 1.
C. 3.

D. 2.


Câu 122. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
8
4
2
Câu 123. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √


3
2a 3
5a 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.

3
3
2
3
Câu 124. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Trang 9/11 Mã đề 1


Câu 125. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 84cm3 .
D. 48cm3 .
Câu 126. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. −e.
C. − 2 .
A. − .
2e
e
Câu 127. [1] Đạo hàm của làm số y = log x là
ln 10
1

1
A. y0 =
.
B.
.
C. y0 =
.
x
10 ln x
x ln 10
Câu 128. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.

1
D. − .
e
1
D. y0 = .
x
D. 0.

Câu 129. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
x→a

C. f (x) có giới hạn hữu hạn khi x → a.
D. lim f (x) = f (a).
x→a

Câu 130. Tìm giá trị lớn chất của hàm số y = x − 2x − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
3

2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A


4.

5.

B
C

7.
9.
11.

B

6.

C

8.

C

C

16.
20. A

21.

C


22.

23. A

24.

25.

D
B
C

28. A

B
D

C

30.

31.

B

32. A

33.

B


34. A
36.

35. A
37.

C

39.

40. A
42. A

C

43.

B

44.

45.

B

46. A

47.


D

38. A
D

41.

D

D

48.

C

50.

49. A
D

C

54.

55. A

D

56.


B
B

57.

D

58.

59.

D

60.

61.

D

52.

B

53.

D

62. A

C

B

64. A

65.
67.

C

26.

C

29.

63.

D

18.

B
C

51.

C

14. A


19.

27.

D

12.

15. A
17.

D

10.

D

13.

B

D
C
1

66.

C

68.


C


69.

D

70. A

71. A

72.

73. A

74.
C

75.

81.

78.
82.

B
C

84. A


85.

C

86.

B
D

90.

B

93.

C
B
B
C
B

92.
94.

C

95. A

C

B

96. A

97.

98.

C

99. A

B

100. A
D

101.
103.

B

88.

89.
91.

C

80.


C

83.
87.

D

76.

77. A
79.

B

102. A

B

104.

105.

D

106.

107. A
109.


B

C

111. A

D

108.

C

110.

C

112.

C

113.

B

114.

C

115.


B

116.

C

119.

C

118. A
120.
122.

121. A

B
C

123.

124. A

125. A

126. A

127.

128.

130.

D

129.

C

2

C
C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×