Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (112)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.89 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. √
Biểu thức nào sau đây khơng
có nghĩa

−3
0
A. (− 2) .
B.
−1.

C. (−1)−1 .

Câu 2. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. 0−1 .
D. Thập nhị diện đều.

Câu 3. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).


(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (I) và (III).

Câu 4. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD. Cho
hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. V = 4π.
C. 16π.
D. 32π.
Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 6. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 20.

C. 30.
D. 12.

log(mx)
= 2 có nghiệm thực duy nhất
Câu 7. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 8. Cho hình √chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 5
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
Câu 9. Khối đa diện đều loại {3; 4} có số đỉnh

A. 6.
B. 8.
C. 4.
D. 10.
Câu 10. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
! x3 −3mx2 +m
1
Câu 11. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 12. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n

1
C. √ .

n

D.

sin n
.
n
Trang 1/10 Mã đề 1


Câu 13. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 68.
C.
.
D. 34.
A. 5.
17
Câu 14. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
2 . ln x


C. y0 =

1
.
ln 2

D. y0 = 2 x . ln x.

Câu 15. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 16.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.

B.
.
e
3

!n
1
C.
.
3

Câu 17. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.

1
1
1
+
+ ··· +
1 1+2
1 + 2 + ··· + n
5
B. .
C. 2.
2

!n

5
D. − .
3
D. 4.
!

Câu 18. [3-1131d] Tính lim
A. +∞.

D.

3
.
2

Câu 19. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079
23
.
B.
.
C.
.
D.
.
A.
68

4913
4913
4913
x−2
Câu 20. Tính lim
x→+∞ x + 3
2
C. −3.
D. 1.
A. 2.
B. − .
3
Câu 21. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.

D. 3.

Câu 22. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B. 26.
C.
.

D. 2 13.
13
Câu 23. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 24. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
q
2
Câu 25. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 26. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n2 lần.
C. n3 lần.
D. n lần.

Trang 2/10 Mã đề 1


Câu 27. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B. m =
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 28. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =

f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
B. 1.
C. −1.
D. .
2

Câu 29. [2-c] Cho hàm số f (x) =
A. 2.

Câu 30. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.


Câu 31. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 32. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
6
12
24
Câu 33. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng

1
ab
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
2
Câu 35. Tính mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.

D. |z| =


5.

Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 37. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.

D. −3.
Trang 3/10 Mã đề 1



Câu 38. Tính lim
x→2
A. 0.

x+2
bằng?
x
B. 1.

C. 2.

Câu 39. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.

D. 3.
D. 9 mặt.

Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
8a3 3
8a3 3
4a3 3
a3 3
A.

.
B.
.
C.
.
D.
.
3
9
9
9
tan x + m
Câu 41. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 42. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 1.
D. 3.
x−3
Câu 43. [1] Tính lim
bằng?
x→3 x + 3
A. 0.

B. −∞.
C. +∞.
D. 1.
Câu 44. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
!
5 − 12x
Câu 45. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 46. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. Vô số.
D. 3.

Câu 47. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. 1 nghiệm.
D. Vô nghiệm.

Z 1
6
2
3
Câu 48. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 6.

B. 4.

C. −1.

D. 2.

Câu 49. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 50. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng



20 3
14 3
.
B. 6 3.
C. 8 3.
D.
.
A.
3
3
Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3

Trang 4/10 Mã đề 1


Câu 52. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. 1 + 2 sin 2x.

Câu 53. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 54. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 10.
D. |z| = 17.
q
2
Câu 55. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].

B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 56. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 57. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3

x y z−1
.
B. =
=
.
A. = =
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3
C.
=
=
.
D.
=
=
.
2
2
2
2
3
4
Câu 58. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13

9
23
5
A.
.
B.
.
C. −
.
D. − .
100
25
100
16
Câu 59. Tính lim
x→3

x2 − 9
x−3

C. +∞.
D. −3.

Câu 60. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
A. 6.


B. 3.

Câu 61. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3

a 3
a 3
a 2
.
B.
.
C. a3 3.
D.
.
A.
2
4
2

Câu 62. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Câu 63. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a 3
4a3 3
2a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
3
3
3
2
Trang 5/10 Mã đề 1


Câu 64. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (−∞; −1).
Câu 65. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

Câu 66. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.

D. (1; +∞).

1
3|x−1|

= 3m − 2 có nghiệm duy

C. 1.

D. 4.

C. 8.

D. 30.

Câu 67. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 4.
D. 12.

Câu 68. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
C. V = 2a3 .
D. V = a3 2.
.
B. 2a3 2.

3
Câu 69. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
3
A.
.
B.
.
C. a .
D.
.
6
2
3
Câu 70. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 71. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.


D. 30.

Câu 72. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 73. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1202 m.
C. 2400 m.
D. 1134 m.
2

Câu 74. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 75. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 2.


D. 3.

Câu 76. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.
D. {2}.
Câu 77. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.


Câu 78. Phần thực√và phần ảo của số phức
z
=
2

1

3i lần lượt √l


A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 79.

bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .
2
12
4
4
Câu 80. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Trang 6/10 Mã đề 1


Câu 81. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =

.
B. y = x + .
C. y = x4 − 2x + 1.
D. y = x3 − 3x.
2x + 1
x
Câu 82. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
d = 120◦ .
Câu 83. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.

B. 4a.
C.
.
D. 3a.
2
Câu 84. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 85. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

Câu 86. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.

C. D = R \ {0}.

D. D = R \ {1}.

C. 6.

D. 36.

Câu 87. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).

B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 88. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 0.
C. 1.

D. −2.
Câu 89. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
d = 300 .
Câu 90. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 3a 3.
.
D. V =
.
B. V = 6a .
C. V =
2
2
1 + 2 + ··· + n
Câu 91. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1

C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Câu 92. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Câu 93. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
Z 2
ln(x + 1)
Câu 94. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 1.
D. 3.
Trang 7/10 Mã đề 1





x = 1 + 3t





Câu 95. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t

x
=
−1
+
2t
x
=
1
+
7t
x = 1 + 3t
















A. 
.
D. 

y = −10 + 11t . B. 
y = −10 + 11t . C. 
y=1+t
y = 1 + 4t .
















z = 6 − 5t
z = −6 − 5t
z = 1 + 5t
z = 1 − 5t


Câu 96. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .

4

1−x2



− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2

Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
x→+∞


Câu 98. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.

B. lim [ f (x) + g(x)] = a + b.
x→+∞

D. lim [ f (x) − g(x)] = a − b.
x→+∞

C. 8.

D. 12.

Câu 99. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
!
!
!
1
2

2016
4x
. Tính tổng T = f
Câu 100. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017

Câu 101. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là


3
3

a3
a
a
3
3

A.
.
B. a3 3.
C.
.
D.
.
4
12
3
x+2
Câu 102. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
3a
Câu 103. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
a
2a

A. .
B.
.
C. .
D.
.
4
3
3
3
Câu 104. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Trang 8/10 Mã đề 1


Câu 105. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 0, 8.

D. 7, 2.

Câu 106. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 1 nghiệm.


D. 3 nghiệm.

Câu 107. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C.
; +∞ .
2
2
2

!
1
D. −∞; − .
2

Câu 108. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 13.
C. 9.

D. 0.

Câu 109. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.

C. 2.

D. −1.

Câu 110. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim k = 0 với k > 1.
n

mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 111. Tìm m để hàm số y =
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 112. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 1).
D. A0 (−3; 3; 3).
Câu 113. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam

giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

a2 5
11a2
a2 2
a2 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
2

Câu 114. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
C. 3 .

B. 2 .
e
e
2 e

D.

1
.
2e3

Câu 115. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 20a3 .
B.
.
C. 10a3 .
D. 40a3 .
3
n−1
Câu 116. Tính lim 2
n +2
A. 1.
B. 0.
C. 3.
D. 2.
Câu 117. Cho hàm số y = |3 cos x − 4 sin x + 8| với

nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng
A. 8 3.
B. 8 2.
x2 − 5x + 6
Câu 118. Tính giới hạn lim
x→2
x−2
A. −1.
B. 5.
1
Câu 119. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
3
3

x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
C. 16.


D. 7 3.

C. 0.


D. 1.

C. −3.

D. 3.
Trang 9/10 Mã đề 1


Câu 120. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.

D. 27.

Câu 121. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là
3
3
3
2a 3
a
4a 3
a3
A.
.
B.
.
C.

.
D.
.
3
3
3
6
Z 3
a
a
x
Câu 122. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = 28.
D. P = −2.
Câu 123. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 5.

C. 4.

D. 3.


Câu 124. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 125. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?

α

= aβ .
β
a
Câu 126. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 16 tháng.
C. 15 tháng.
D. 17 tháng.

A. aα bα = (ab)α .

B. aαβ = (aα )β .

C. aα+β = aα .aβ .

D.

Câu 127. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m < 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 128. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d nằm trên P.
Câu 129. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
x3 − 1
Câu 130. Tính lim
x→1 x − 1
A. −∞.
B. 0.

C. 3.

D. +∞.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

D

3.

C

6.

D

7.

C

8.

D

10.

D


9. A
11.

B

13.
15.

12.
C

14. A

B

17.

D

19.

B

16.

C

18.


C

20.

C

21. A

D
C

22.
24.

C

23.

D

25. A

26.

C

27. A

28.


C

30.

C

29.

B

31. A

32.

33.

D

37.

34.

C

35.
B

38.
D


40.

41.

D

42. A

C
B

44.

43. A
45.

D

47. A
49.

D

51.

C

46.

B


48.

B

50.

B

54.

57. A

58.

59. A

60. A

61. A

62. A
D

65.

D
C

64. A

66. A

C

67.

B

56.

C

63.

D

52. A

B

55.

69.

C

36. A

39.


53.

B

D
B
1

68.

B

70.

B


71.

D

72. A
74. A

73. A
75.

C

76.


77.

C

78. A

79.

C

80.

81. A
83.

C

85. A
87.

C

84.

C

86. A
88.


B
C

90.

91.

C

92.

B

B
C
D

94. A

95. A

96.

97. A

98.

99.

D


82.

89.
93.

B

B

C
B

100.

D
D

101.

D

102.

103.

D

104.


B

106.

B

105. A
107.

108.

B

109. A

D

110. A

111.

112.

D

D

113. A

114.


B

115. A

116.

B

117.
119.

C

118. A

B

120.

121.

C

122.

123.

C


124. A

C
B

125.

D

126.

B

127.

D

128.

B

129.

D

130.

2

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×