TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
Câu 2.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 10.
B. 2.
C. 2.
D. 1.
Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. − .
D. −e.
e
e
2e
Câu 4. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3
a3 3
a 3
3
.
B.
.
C. a .
D.
.
A.
2
3
6
Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 6 mặt.
D. 4 mặt.
Câu 6. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
7
5
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3
Câu 7. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Khơng thay đổi.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Câu 8. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 9. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 10. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. .
C. .
D. 9.
2
2
Câu 12. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 3.
C. 2.
Câu 13. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.
D. 1.
D. 5.
Trang 1/11 Mã đề 1
Câu 14. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
2
2
sin x
Câu 15.
+ 2cos x √
lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x)
√ =2
A. 2 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 16. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB
√ có độ dài bằng
√
A. 2.
B. 2 3.
C. 2 2.
D. 6.
Câu 17. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
a 3
2a 3
a 3
.
C.
.
D.
.
A. a 3.
B.
3
2
2
Câu 18. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
D. {4; 3}.
Câu 19. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 20 mặt đều.
√3
4
Câu 20. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
A. a 8 .
B. a 3 .
C. a 3 .
Câu 21. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 12 cạnh.
D. Khối 12 mặt đều.
5
D. a 3 .
D. 10 cạnh.
d = 60◦ . Đường chéo
Câu 22. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Câu 23. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
D. 9.
A. 8.
B. 27.
C. 3 3.
Câu 24. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
sai.
Câu 25. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (4; +∞).
D. Câu (II) sai.
D. (−∞; 6, 5).
Câu 26. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 27. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≥ .
C. m < .
D. m > .
A. m ≤ .
4
4
4
4
Trang 2/11 Mã đề 1
Câu 28. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1134 m.
D. 1202 m.
Câu 29. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
1
Câu 30. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Câu 31. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Ba cạnh.
q
2
Câu 32. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 33. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 2.
C. m = ± 3.
D. m = ±3.
√
x2 + 3x + 5
Câu 34. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√
√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
16
48
x−1 y z+1
Câu 36. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.
√
Câu 37. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 38. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Câu 39. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 7.
D. 2.
Câu 40. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
3
2
Câu 41. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a =
.
D. log2 a = loga 2.
log2 a
loga 2
Trang 3/11 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 42. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.
Câu 43. [1] Tính lim
A. +∞.
x→3
x−3
bằng?
x+3
B. −∞.
C. 1.
D. 0.
Câu 44. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 2.
D. 0, 3.
Câu 45. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B.
D. a 3.
A. a 6.
.
C. 2a 6.
2
Câu 46. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là
√
√
√
a3 3
4a3 3
5a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 47. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 48. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 30.
C. 12.
D. 20.
√
Câu 49. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
a 38
3a 38
3a
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 50.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.
Câu 51. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 52. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 10.
D. 4.
Câu 53. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Trang 4/11 Mã đề 1
√
Câu 54. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3
√
a 3
a3 3
a3
A.
.
B.
.
C. a3 3.
D.
.
3
12
4
Câu 55. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. Không tồn tại.
D. −5.
Câu 56. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 57. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; −8)(.
C. A(−4; 8).
D. A(4; 8).
2n + 1
Câu 58. Tính giới hạn lim
3n + 2
1
3
2
A. .
B. 0.
C. .
D. .
2
2
3
Câu 59. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + 3.
D. T = e + .
e
e
Câu 60. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
√
Câu 61. Thể tích của khối lập phương có cạnh bằng a 2
√
√
A. V = a3 2.
B. 2a3 2.
C. V = 2a3 .
√
2a3 2
D.
.
3
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
1
Câu 63. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. .
C. − .
D. −3.
3
3
Câu 64. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Cả hai đều đúng.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Trang 5/11 Mã đề 1
Câu 65. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 10 .(3)40
C 20 .(3)30
C 20 .(3)20
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 66. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
Câu 67. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. − < m < 0.
D. m ≥ 0.
A. m > − .
4
4
Câu 68. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
x
9
Câu 69. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. .
C. 2.
D. 1.
2
Câu 70. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 71. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.
D. 10 mặt.
Câu 72. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
D. Ba mặt.
√
Câu 73. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 74. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
B. 1.
C.
.
A. .
2
2
Câu 75. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
C. 2.
Câu 76. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.
D. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
D. {5; 3}.
Câu 77. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
Trang 6/11 Mã đề 1
Câu 79. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 80. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
2
4
x3 − 1
Câu 81. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. 3.
D. +∞.
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 83. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 84. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 85. Phát biểu nào sau đây là sai?
1
= 0 với k > 1.
nk
D. lim un = c (Với un = c là hằng số).
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n
B. lim
Câu 86. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
x2 − 5x + 6
x→2
x−2
B. 0.
D. {4; 3}.
Câu 87. Tính giới hạn lim
A. 1.
C. −1.
D. 5.
2
Câu 88. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 4.
C. 2.
5
Câu 89. Tính lim
n+3
A. 1.
B. 0.
C. 3.
D. 2.
Câu 90. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
D. 2.
C. 144.
D. 3.
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
C.
.
D.
.
2017
2018
!
Câu 91. [3] Cho hàm số f (x) = ln 2017 − ln
A.
4035
.
2018
B. 2017.
Câu 92. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Trang 7/11 Mã đề 1
Câu 93. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. 2e4 .
D. −2e2 .
Câu 94. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 95. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 12.
D. 27.
Câu 96. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. 0.
D. Khơng tồn tại.
Câu 97. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).
D. (2; 4; 6).
Câu 98. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
π
Câu 99. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 100. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 101. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 102. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 103. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều.
Câu 104. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 6.
C. 2.
x+2
Câu 105. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
C. 0.
D. Khối lập phương.
D. 1.
D. 2.
Câu 106. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (0; −2).
D. (−1; −7).
1
Câu 107. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Trang 8/11 Mã đề 1
Câu 108. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
Câu 109. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
D. 1 nghiệm.
C. D = (0; +∞).
D. D = R \ {0}.
2
x
Câu 110. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = .
D. M = e, m = 0.
A. M = e, m = 1.
B. M = , m = 0.
e
e
√
Câu 111. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√
√
√ cho là
πa3 3
πa3 3
πa3 6
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
3
2
6
6
√
Câu 112. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
B. .
C. 5.
D. 25.
A. 5.
5
Câu 113. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
√
√
4n2 + 1 − n + 2
bằng
Câu 114. Tính lim
2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 115. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
2
3
3
Câu 116. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e2 .
D. e3 .
Câu 117. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
D.
.
A. √
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 118. Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 119. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng
√
√
√
b a2 + c2
a b2 + c2
c a2 + b2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 120. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
C. 6.
D. 4.
q
Câu 121. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Trang 9/11 Mã đề 1
2
Câu 122. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 2 .
e
e
2 e
D.
1
.
2e3
Câu 123. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
Z 1
Câu 124. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
4
0
B.
1
.
2
C. 1.
D. 0.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 125. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 126. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 127. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
.
B. 26.
A.
C. 2.
D. 2 13.
13
cos n + sin n
Câu 128. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 130. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2.
C
3.
4. A
6. A
8.
11.
C
B
7.
D
9.
D
12.
13. A
14. A
15. A
16.
17.
19.
D
20.
21.
D
22.
25.
C
B
D
18.
B
23.
D
C
D
24. A
C
26.
B
27. A
28.
C
B
29.
D
30.
C
31.
D
32.
C
33.
B
34.
35.
B
36.
D
37.
B
38.
D
39.
D
41.
40. A
C
43.
D
45. A
42.
D
44.
D
46. A
47.
D
48.
49. A
B
52. A
53.
B
54. A
C
55.
57.
65.
56.
D
59.
63.
C
B
58.
C
D
60. A
B
62.
B
64.
C
D
D
66. A
67. A
69.
B
50.
51.
61.
B
68. A
D
70.
1
B
71.
73.
72. A
C
D
75.
76.
77.
C
78.
79.
C
80. A
81.
C
82.
83.
C
B
C
86.
87.
88.
C
B
B
90.
D
91.
B
B
B
94.
95.
B
96.
D
97.
C
92.
93.
C
98. A
99. A
101.
B
84. A
B
85. A
89.
D
74.
B
100.
B
102.
B
D
103.
D
104.
105.
D
106.
C
107.
D
108.
C
B
110.
D
111. A
112.
D
113. A
114.
115. A
116. A
117. A
118.
C
120.
C
109.
119.
B
B
121.
122. A
C
123. A
125.
D
127. A
129.
C
124.
B
126.
B
128. A
B
130.
2
B