Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (821)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.12 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới đây?
"
!
5
5
C. (1; 2).
D.
;3 .
A. [3; 4).
B. 2; .
2
2
 π
Câu 2. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
C. e .


D.
A. 1.
B.
e .
e .
2
2
2


ab. Giá

Câu 3. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.

C. 3.
D. 5.
a
1
Câu 4. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 5. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.


C. 30.
D. 12.


Câu 6. Phần thực và phần
√ ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

B. Phần thực là √2, phần ảo là 1 − √
3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
Câu 7. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
8
2
Câu 8. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
2


C. D = R \ {1; 2}.

D. D = (−2; 1).

Câu 9. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 10. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = 10.
D. P = −10.
Câu 11. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
c a2 + b2
abc b2 + c2
a b2 + c2
b a2 + c2
.
B. √

.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 12. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
A. − .
B.
.
3
e

!n
1
C.
.
3

Câu 13. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1

A. − .
B. .
C. −2.
2
2

!n
5
D.
.
3

D. 2.
Trang 1/10 Mã đề 1


!
x+1
Câu 14. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B.
.
C. 2017.
D.
.

A.
2018
2018
2017
Câu 15. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 9 mặt.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a 2
a
a
2a
.
B.
.
C. .
D. .
A.
3
3
3

4
Câu 17. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các ngun
Câu 16. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 18. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 68.

C. 5.
D.
.
A. 34.
17
Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
!x
1
Câu 20. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 21. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.

Câu 22. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 23. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.
C. 1.
D. .
2
2
4x + 1
Câu 24. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. −1.
D. 2.
Trang 2/10 Mã đề 1


Câu 25. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 15
a3 5
a3 6
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
1 − 2n
Câu 26. [1] Tính lim
bằng?
3n + 1
1
2
2
B. .
C. .
D. 1.
A. − .
3

3
3

x2 + 3x + 5
Câu 27. Tính giới hạn lim
x→−∞
4x − 1
1
1
D. .
A. 0.
B. 1.
C. − .
4
4
x+2
Câu 28. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Câu 29. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.

Câu 30. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 2.
C. 0.

D. 3.

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 32. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
log2 240 log2 15

+ log2 1 bằng
Câu 33. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 3.
D. 1.
Câu 34. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 35. Thể tích của khối lăng√trụ tam giác đều có cạnh √

bằng 1 là:
3
3
3
A. .
B.
.
C.
.
4
4
2


3
D.
.
12

1

Câu 36. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = R.
C. D = (−∞; 1).

D. D = R \ {1}.

Câu 37. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của


A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 38. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. 4.

Câu 39. Hàm số y = −x + 3x − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).
3

D. 5.

2

D. (−∞; 1).

Câu 40. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 3.
D. 2.
Trang 3/10 Mã đề 1


Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng

nhau?
A. 3.
B. 4.
C. 6.
D. 8.
cos n + sin n
Câu 42. Tính lim
n2 + 1
A. +∞.
B. 1.
C. 0.
D. −∞.
n−1
Câu 43. Tính lim 2
n +2
A. 3.
B. 1.
C. 2.
D. 0.
Câu 44. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3

−5
3
−2
−1
x y−2 z−3
x−2 y−2 z−3
=
=
.
B. =
=
.
A.
2
3
4
2
3
−1
x y z−1
x−2 y+2 z−3
C. = =
.
D.
=
=
.
1 1
1
2

2
2
Câu 45. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a
√3. Thể tích khối chóp S .ABCD là

3
3
a3
a 3
a 3
D.
.
B.
.
C. a3 .
.
A.
9
3
3
Câu 46. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình

lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 47. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.

D. {3; 4}.

Câu 48.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z

Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.


Câu 49. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. 7.
B. −7.
C. −6 2.
x3 − 1
Câu 50. Tính lim
x→1 x − 1
A. −∞.
B. 3.
C. 0.


D. 6 2.
D. +∞.

Câu 51.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 4/10 Mã đề 1


Câu 52. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (−∞; −1).
C. (−1; 1).

D. (1; +∞).

Câu 53. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.

D. 6.

C. 4.

Câu 54. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.

B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
x2
Câu 55. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.
C. M = , m = 0.
D. M = e, m = 0.
e
e
2

Câu 56. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 2 − log2 3.

D. 3 − log2 3.

Câu 57. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞

f (x) a
= .
C. lim [ f (x) + g(x)] = a + b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 58. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 1.

D. 3.
!
3n + 2
2
Câu 59. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
Câu 60. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 10.
C. 3.

D. 27.


Câu 61. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 62. Dãy số
!n nào có giới hạn bằng 0?
!n
6
−2
.
B. un =
.
A. un =
3
5
2n − 3
Câu 63. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.

C. un =

C. −∞.

n3 − 3n
.

n+1

D. un = n2 − 4n.

D. 1.

Câu 64. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 65. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2.
B. 26.
C.
.
D. 2 13.
13
Trang 5/10 Mã đề 1


Câu 66. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.

B. n lần.
C. 3n3 lần.
D. n2 lần.
x+2
Câu 67. Tính lim
bằng?
x→2
x
A. 2.
B. 1.
C. 0.
D. 3.
Câu 68. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
α+β
α β
D. aα bα = (ab)α .
A. a = (a ) .
B. a = a .a .
C. β = a β .
a
2

Câu 69. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

Câu 70. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = 1.
B. f 0 (0) =
.
C. f 0 (0) = 10.
ln 10
x+1
Câu 71. Tính lim
bằng
x→+∞ 4x + 3
1
A. 1.
B. 3.
C. .
4
2
Câu 72. Giá trị của lim (3x − 2x + 1)
x→1
A. 2.
B. +∞.
C. 3.

D. 7.
D. f 0 (0) = ln 10.

D.

1
.

3

D. 1.
x+3
nghịch biến trên khoảng
Câu 73. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 74. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
3
a
a
a
3
3
A. a3 .
B.
.
C.
.
D.

.
2
3
6
2mx + 1
1
Câu 75. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.
Câu 76. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.
C. V = 4.
D. V = 6.
Câu 77. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
Câu 78. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.

C. 7.
D. 3.
Câu 79. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.




D. Thập nhị diện đều.

Câu 80. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
4
4
4
Câu 81. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2

2


Trang 6/10 Mã đề 1


Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e2 .
C. −e2 .
D. 2e4 .
Câu 83. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
5
8
A.
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
3
3
3

Câu 84. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. Vơ số.
B. 62.
C. 64.
D. 63.
Câu 85. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 86. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
.
B.
.
A.
n
n

1
C. √ .
n

D.

1
.
n

Câu 87. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các

mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).

Câu 88. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 89. Khối đa diện đều loại {3; 3} có số cạnh
A. 8.
B. 6.

C. 5.

Câu 90. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim k = 0 với k > 1.
n


B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n

Câu 91. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. 4.

D. m = −1.

Câu 92. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là −1, phần ảo là −4.
Câu 93. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].

D. [6, 5; +∞).

Câu 94. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.

D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 7/10 Mã đề 1


4

Câu 95. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
2
7
5
A. a 3 .
B. a 3 .
C. a 8 .

√3

a2 bằng
5

D. a 3 .

Câu 96. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.

Câu 97. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Bốn cạnh.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 98. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
Câu 99. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 2.


D. 0.

Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
un
Câu 101. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. −∞.
D. +∞.
2


2

sin x
Câu 102.
+ 2cos x lần lượt là
√ trị lớn nhất của hàm
√ số f (x) = 2
√ [3-c] Giá trị nhỏ nhất và giá
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
A. 2 2 và 3.

Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp đơi.
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3
a3 3
3
.
B.

.
C. a 3.
D.
.
A.
3
6
3


4n2 + 1 − n + 2
Câu 105. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
3
2
x
Câu 106. [2] Tìm m để giá trị nhỏ nhất
√ + 1)2 trên [0; 1] bằng 2
√ của hàm số y = 2x + (m
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.

Câu 107. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 40 .(3)10
C 10 .(3)40
C 20 .(3)20
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
Trang 8/10 Mã đề 1


2n + 1
Câu 108. Tìm giới hạn lim
n+1
A. 3.
B. 2.

C. 1.

Câu 109. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.

C. −1.

D. 0.
D. 6.


Câu 110. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 58
3a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 111. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
5a
a
8a
2a
A.
.
B. .
C.
.
D.
.
9
9
9
9
x−1
Câu 112. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng

B. 6.
C. 2.
D. 2 3.
A. 2 2.
Câu 113. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7

5
C. 6.
D. .
A. 9.
B. .
2
2
Câu 114. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.
4
2
2
Câu 115. Thập nhị diện đều (12 mặt đều) thuộc loại

A. {4; 3}.
B. {3; 4}.
C. {3; 3}.
D. {5; 3}.
Câu 116. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 20.

C. 12.

D. 10.

Câu 117. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.

5
bằng
Câu 118. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a

1
A. .
B. 5.
C. 5.
D. 25.
5

Câu 119. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
log √a

Câu 120. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.
D. {3; 3}.
mx − 4
Câu 121. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
1
Câu 122. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 4.
D. 2.
Trang 9/10 Mã đề 1



Câu 123.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

B.

xα+1
+ C, C là hằng số.
α+1

Z
D.

dx = x + C, C là hằng số.
1
dx = ln |x| + C, C là hằng số.
x

Câu 124. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2

C. T = 4 + .
D. T = e + 1.
A. T = e + 3.
B. T = e + .
e
e
Câu 125. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 12.
C. ln 14.
D. ln 4.
Câu 126. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.

C. 4.

D. 2.


Câu 127. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



3
πa3 3
πa3 3
πa3 3

πa 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 128. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
2

Câu 129. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 4.
C. 5.

D. 3.

Câu 130. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.

B. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
C. y = log √2 x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B
B

3.

B

4.

5.

B


6.

7.

B

8.

9.

B
C

12.

13.

C

14.

C
B

17.

16. A
18.

D


22.

21.
D

C

23. A
D

25.

B

26. A

27.

C
C

28.

C

29.

30.


C

31.

32.

C

33. A

B

35.

36. A
38.

D

19. A

C

20.

34.

B

10. A


11.

24.

D

C

40.

D

D
B

37.

C

39.

C

41. A

42.

C


43.

D

44.

C

45.

D

46.

D

47. A

48.

B

49.

D

50.

B


51.

D

53.

D

55.

D

57.

D

59.

D

52.

C

54. A
56.

C

58. A

60.

61.

C

62. A

63. A

64. A

65.

66. A

67. A

68.

69.

C
1

C
C
D



70.

D

72. A
74.

B

76.

73.

B

75.

B

77.

C

78.

B

79.

80.


B

81. A

82.

C

71.

C
D

83.

C

85.

C

86. A

87.

C

88. A


89.

90. A

91.

C

93.

C

84.

92.

C
B

B

94.

D

95. A

C

96.

98. A

C

100.

B

97.

C

99.

C

101.

B

102. A

103.

C

104. A

105.


C

106. A

107.

D
D

108.

B

109.

110.

B

111.

C

112.

D

113.

D


114.

D

115.

D

116.

C

118.
120.

D
B

117.

C

119.

C

121.

B


122. A

123.

C

124. A

125.

C

126.

B

127.

128.

B

129.

130.

C

2


D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×