Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (725)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (158.02 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. m > − .
D. − < m < 0.
4
4
Câu 2. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 3. [2] Phương trình log x 4 log2
12x − 8
A. 1.


B. 3.
C. 2.
D. Vô nghiệm.
Câu 4. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
Câu 5. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

D. 5 mặt.

Câu 6. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
3
2
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A.
.
B. 2.

C. 1.
D. 3.
3
Câu 7. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
11a
a 7
a 2
a 5
A.
.
B.
.
C.
.
D.
.
32
8
4
16





Câu 8. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 < m ≤ .
4
4
4
!
1
1
1
Câu 9. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. .
D. 1.
2
Câu 10. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 − 2e
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4 − 2e
4e + 2
4 − 2e
4e + 2
Câu 11. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 =
.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
2

2


Trang 1/10 Mã đề 1


Câu 12. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 13. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
2
2
Câu 14. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 3.
2n − 3
Câu 15. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 1.
C. 0.



x
+
3
+
6 −√x
Câu 16.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=


A. 2 3.
B. 3 2.
C. 2 + 3.
Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

C. 1.


D. 1.
D. 1.

D. −∞.
D. 3.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 18. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 19. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = R \ {1; 2}.
C. D = (−2; 1).
2

D. D = [2; 1].

Câu 20. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.

D. −6.
Câu 21. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. [6, 5; +∞).

D. (−∞; 6, 5).

d = 30◦ , biết S BC là tam giác đều
Câu 23. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.

D.
.
13
26
9
16
Câu 24. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Z 1
6
2
3
Câu 25. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √

. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 6.

C. −1.

D. 4.

Câu 26. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.
Câu 27. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
4a
2a
4a 3
2a3 3
A.

.
B.
.
C.
.
D.
.
3
3
3
3
Trang 2/10 Mã đề 1


Câu 28. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).

D. (−1; −7).

Câu 29. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 = .
C.

.
D. y0 =
.
x
x
10 ln x
x ln 10
Câu 30. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
2
3
2
Câu 31. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 32. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.

C. Khơng có.
D. Có hai.
tan x + m
Câu 33. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. [0; +∞).
B. (−∞; 0] ∪ (1; +∞). C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 34. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 35. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+1
c+2

Câu 36. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 3.
C. 12.

D.

3b + 2ac
.
c+3

D. 10.

Câu 37. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−1; 3].
C. [−3; 1].
D. [1; +∞).
3

2

Câu 38. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 + i 3
−1 − i 3
.
D. P =
.

A. P = 2i.
B. P = 2.
C. P =
2
2
x+1
Câu 39. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
0 0 0 0
Câu 40. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .

D. k = .
9
6
18
15
3
2
Câu 41. Cho hàm số y = −x + 3x − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 3/10 Mã đề 1


9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 43. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 42. [2-c] Cho hàm số f (x) =


Câu 44. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 45. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 22.
C. 23.
D. 24.
Câu 46. Tứ diện đều thuộc loại
A. {3; 3}.
B. {5; 3}.

C. {3; 4}.

D. {4; 3}.

[ = 60◦ , S O
Câu 47. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng



a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
9t
Câu 48. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 2.
D. 0.
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3

3

a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
1 − 2n
Câu 50. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. − .
C. .
D. 1.
3
3
3
1

Câu 51. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. 1.
D. −2.
Câu 52. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 53. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 68.
D. 34.
17
Trang 4/10 Mã đề 1


Câu 54. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √

chóp S .ABMN là



3
2a 3
5a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 55. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.

Câu 56. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 0.

D. 2.

x
Câu 57. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
B.
.
C. 1.
D. .
A. .
2
2
2
Câu 58. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 6
a3 6
a3 3

.
B.
.
C.
.
D.
.
A.
24
8
24
48
! x3 −3mx2 +m
1
Câu 59. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m ∈ (0; +∞).
C. m = 0.
D. m , 0.

Câu 60. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + .
C. T = e + 3.

D. T = e + 1.
e
e
Câu 61. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) + g(x)] = a + b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

Câu 62. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 63. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.

C. 10.


D. 12.

Câu 64. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.
Câu 65. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.
Trang 5/10 Mã đề 1


Câu 66. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 4.

C. 2.

D. 5.


Câu 67. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
2n + 1
Câu 68. Tìm giới hạn lim
n+1
A. 1.
B. 2.

C. 3.
D. 0.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.
D. Vơ nghiệm.

Câu 69. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. 1 nghiệm.

Câu 70. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. 7.
B. −6 2.
C. 6 2.

D. −7.


Câu 71. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 72. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
120.(1, 12)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1

3
Câu 73. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. − .
B. .
C. −2.
2
2
Câu 75. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m > 0.

D. 2.

D. m , 0.

Câu 76. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Câu 77. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).

Câu 78. [4-1212d] Cho hai hàm số y =

Trang 6/10 Mã đề 1


Câu 79. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a

2a
8a
5a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 80. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 81. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. +∞.

C. 0.


D. −∞.

Câu 82. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 83. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

B. 3 − 4 2.
C. 3 + 4 2.
A. −3 + 4 2.


D. −3 − 4 2.

Câu 84. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 85. [1] Tập
!
! xác định của hàm số y != log3 (2x + 1) là
1
1
1
A. −∞; − .
B. − ; +∞ .

C.
; +∞ .
2
2
2

!
1
D. −∞; .
2

Câu 86. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.

D. 12.

Câu 87. Dãy số
!n nào có giới hạn bằng3 0?
−2
n − 3n
A. un =
.
B. un =
.
3
n+1

C. 30.
C. un = n − 4n.

2

Câu 88. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 5.
5

!n
6
D. un =
.
5



D. 25.

Câu 89. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.
D. 12 m.
Câu 90. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a



a3
a3 15
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
3
25
25
5
Câu 91. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 8.

D. 12.
Trang 7/10 Mã đề 1


d = 300 .
Câu 92. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.



a3 3
3a3 3
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
A. V =
2
2
!
x+1
Câu 93. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018
2017

x3 − 1
Câu 94. Tính lim
x→1 x − 1
A. −∞.
B. 0.
C. +∞.
D. 3.
Câu 95. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 14.
C. ln 12.
D. ln 10.
2
x − 12x + 35
Câu 96. Tính lim
x→5
25 − 5x
2
2
B. +∞.
C. −∞.
D. − .
A. .
5
5
Câu 97. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.

D. 1.
Câu 98.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
Z x
D.
dx = x + C, C là hằng số.

B.

x2
Câu 99. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = .
B. M = e, m = 1.

C. M = , m = 0.
D. M = e, m = 0.
e
e

Câu 100. Thể tích của khối lập phương có cạnh bằng a 2

3


2a
2
A. V = a3 2.
.
B. V = 2a3 .
C. 2a3 2.
D.
3
Câu 101. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.
D. 1.
2
2
2
1 + 2 + ··· + n
Câu 102. [3-1133d] Tính lim
n3
1

2
A. .
B. +∞.
C. 0.
D. .
3
3
0 0 0 0
Câu 103.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
2
7
Câu 104. Hình nào trong các hình sau đây khơng là khối đa diện?

A. Hình lập phương.
B. Hình tam giác.
C. Hình chóp.
D. Hình lăng trụ.
Câu 105. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Trang 8/10 Mã đề 1


!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
log 2x

Câu 106. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x

A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 107. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 108. Hàm số nào sau đây không có cực trị
x−2
1
A. y =
.
B. y = x + .
C. y = x4 − 2x + 1.

D. y = x3 − 3x.
2x + 1
x
Câu 109. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; 0) và (1; +∞).
Câu 110. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
Câu 111. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d ⊥ P.
D. d song song với (P).

Câu 112. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là −1, phần ảo là −4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là 4, phần ảo là 1.
Câu 113.
√ Thể tích của tứ diện đều
√cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
2
1
Câu 114. [1] Giá trị của biểu thức log √3
bằng
10


a3 2
C.
.
12



a3 2
D.
.
6

1
1
C. − .
D. .
3
3
0 0 0 0
Câu 115. [3] Cho hình lập phương ABCD.A B C D có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3

Câu 116. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 5}.
D. {3; 4}.

Câu 117. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
A. 3.


B. −3.

Trang 9/10 Mã đề 1


1
Câu 118. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 119. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
4
2



4n2 + 1 − n + 2
Câu 120. Tính lim
bằng
2n − 3
3
C. 2.
D. 1.
A. +∞.
B. .
2
Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Hai mặt.
D. Năm mặt.
Câu 122. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3

a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
36
12
24
6
Câu 123. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
q
2
Câu 124. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
Câu 125. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó

Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.


Câu 126. Phần thực và√phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l

B. Phần thực là √2 − 1, phần ảo là −√ 3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 127. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 2020.
D. 13.
Câu 128. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40
C 40 .(3)10
C 20 .(3)30
B. 50 50 .
C. 50 50 .

D. 50 50 .
A. 50 50 .
4
4
4
4
2
Câu 129. Giá trị của lim(2x − 3x + 1) là
x→1
A. 2.
B. 0.
C. +∞.
D. 1.
Câu 130. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. 5.
2

D. −6.

- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.


C

3. A

D

4.

C

5.

B

6.

B

7.

B

8.

B

10.

B


D

9.
11.

B

12.

13.

B

14. A

15.

C

16.

17.

C

18. A

19. A


B

20. A

21.

D

22. A

23. A

24.

25.

D

C

26.

27. A

D

28. A

29.
31.


D

30.

D
B

32.

33.

D

D
B

34.

C

35.

C

36.

B

37.


C

38.

B

39.

C

41. A

42.
44.

D

43. A

B

45.

B

47.

46. A
48.


C

49. A

50.

B

51.

52.

B

53.

54.

D

D

D
B

55. A

56.


C

57.

C

58.

C

59.

C

60.

C

61. A
63.

62. A
64.

B

65.

66.


B

67.

68.

B

69.
1

D
C
D
C


70.

71.

C

72. A

73. A
75.

C


74.
76.

D

78.
80.

77.

C
B

82.

D

C

81.

C

85.
D

87. A

88.


D

89. A
91.

B

92. A
D

95.

96. A

B
B

97.

98.

C

100.

C

D

101. A

103.

B

B

105. A
D

107.

C

106.

C

99.

102. A

108. A

109.

110.

D
C


113.

114.

C

115.

116.

C

117. A

118.

C

119.
D

120.

121.

B

124.

C


111. A

112.

126.

B

93. A

94.

122.

B

79.

86.

104.

D

83. A

84. A

90.


C

C

C
D
D
B

123.

D

125.

D

127. A

B

128. A

129.

130. A

2


B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×