Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (633)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.61 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.

D. 3.

Câu 2. Phát biểu nào sau đây là sai?
1
= 0.
nk
1
C. lim = 0.
D. lim un = c (un = c là hằng số).
n
 π π
Câu 3. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. −1.
D. 7.


A. lim qn = 0 (|q| > 1).

B. lim

Câu 4. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 5. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b


x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 6. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

Câu 7. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. y =

x−2
.
2x + 1

C. {4; 3}.

1
D. y = x + .
x
D. {3; 3}.

3
2

x
Câu 8. [2] Tìm
√ hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ m để giá trị lớn nhất của
B. m = ± 2.
C. m = ±3.
D. m = ±1.
A. m = ± 3.

Câu 9. Cho z là √
nghiệm của phương trình √x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
d = 30◦ , biết S BC là tam giác đều
Câu 10. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vuông √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39

a 39
A.
.
B.
.
C.
.
D.
.
26
13
9
16
x−2
Câu 11. Tính lim
x→+∞ x + 3
2
A. 1.
B. − .
C. 2.
D. −3.
3
Câu 12. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 13. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3

a3
3
A.
.
B.
.
C. a .
D.
.
3
2
6
Trang 1/11 Mã đề 1


Câu 14. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.

C.
.
D.
.
6
12
12
4
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
48
24
48

16
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 17. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.

D. e.

Câu 18. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
a
5a
.
B.
.
C.
.
D. .
A.
9

9
9
9
12 + 22 + · · · + n2
n3
1
B. .
3

Câu 19. [3-1133d] Tính lim
A.

2
.
3

C. 0.

D. +∞.

Câu 20. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.

D. .
2
2
3
Câu 21. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 3).
D. (2; 4; 6).
1
Câu 22. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = 4.
C. m = −3.
D. m = −3, m = 4.
Câu 23. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .

A. 50 50 .
4
4
4
4
Câu 24. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
Câu 25. Tính lim
A. 0.

2n − 3
bằng
+ 3n + 1
B. −∞.

2n2

C. +∞.

D. (1; 2).

D. 1.

Câu 26. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 5.
C. 3.
D. 1.

Trang 2/11 Mã đề 1


Câu 27. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
12
24
6
Câu 28. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2

a 3
A.
.
B. a3 3.
C.
.
D.
.
2
2
4
Câu 29. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B. 7.
C.
.
D. 5.
A. .
2
2
Câu 30. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
C. 10.
D. 12.
Câu 31. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 12.
C. ln 10.

D. ln 14.
Câu 32. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 33. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 46cm3 .
D. 64cm3 .
!x
1
1−x

Câu 34. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
D. − log3 2.
Câu 35. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 36. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.


C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 37. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
6
9
15
18
Câu 38. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.
C. 6.
D. 10.
Câu 39. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.


D. 6.

Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C. 2a 2.
D.
.
2
4
Trang 3/11 Mã đề 1


Câu 41. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. −2.
C. .
D. − .
2

2
Câu 42. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.
C. 10 năm.
D. 8 năm.
Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. −e.
D. − .
A. − 2 .
e
2e
e
Câu 44. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
x
x+1
x−2 x−1
+

+
+
và y = |x + 1| − x − m (m là tham
Câu 45. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−∞; −3).
D. (−3; +∞).
Câu 46.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).

A.
Z
C.

Z
B.

f (x)dx = F(x) +C ⇒

Z


f (u)dx = F(u) +C. D.

Z

k f (x)dx = k

Z

f (x)dx, k là hằng số.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 48. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 3.
D. 2.
Câu 49. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.

D. m > 3.
Câu 50. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 8 mặt.

D. 9 mặt.

Câu 51. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (I) và (III).

C. (II) và (III).

D. Cả ba mệnh đề.
Trang 4/11 Mã đề 1


5
Câu 52. Tính lim
n+3
A. 3.

B. 2.


C. 0.

D. 1.

Câu 53. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
.
C.
.
D.
.
B.
3
2
6
x2
Câu 54. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.

B. M = e, m = .
C. M = e, m = 1.
D. M = , m = 0.
e
e
log(mx)
= 2 có nghiệm thực duy nhất
Câu 55. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 56. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.

Câu 57.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
1
Câu 58. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch

3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 59. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 + 4 2.
C. 3 − 4 2.


D. −3 + 4 2.

Câu 60. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

D. {3; 4}.

C. {5; 3}.

Câu 61. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 62. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .

C. 1.
D. 0.
2
x − 5x + 6
Câu 63. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 0.
D. 1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a3 3
a
2
2
a
A.
C.
.
B. a3 3.
.
D.
.

6
12
4
Câu 65. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD là

3
3
3
a
3
a
a
3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
Câu 66. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.
D. Không tồn tại.

Câu 67. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.

D. x = −5.
Trang 5/11 Mã đề 1


Câu 68. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 3).
Câu 69. Giá trị của giới hạn lim
A. 1.

B. 2.

2−n
bằng
n+1

Câu 70. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.

.
n
n

C. 0.

D. −1.

1
C. √ .
n

D.

1
.
n

Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
.
B.
.

C.
.
D.
.
A.
12
4
8
4
Câu 72. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 73. Giá trị lớn nhất của hàm số y =
A. 1.

B. −2.

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. −5.
D. 0.

Câu 74. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.


C. Khối lập phương.

D. Khối bát diện đều.

Câu 75. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.

C. 3.

D. 4.

Câu 76. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. (−∞; −3].
C. [−1; 3].
D. [−3; 1].
Câu 77. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.

C. 4.

D. 10.

Câu 78. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.

B. 3.
C. Vô số.
D. 2.
Câu 79. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
8
24
24
48
Câu 80. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .

Câu 81. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3

C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
Trang 6/11 Mã đề 1


Câu 82. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = 6.
Câu 83. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a

x→a

x→a


C. f (x) có giới hạn hữu hạn khi x → a.

D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

2

Câu 84. Tính lim
x→3

A. −3.

x −9
x−3

B. +∞.

C. 3.

D. 6.

Câu 85. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.

D. 1 − sin 2x.


Câu 86. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 72.

Câu 87. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

D. Khối bát diện đều.

C. Khối tứ diện đều.
!
1
1
1
+ ··· +
Câu 88. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
A. 2.
B. .
C. +∞.
2
Câu 89. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.

B. {3; 3}.
C. {3; 4}.

D.

3
.
2

D. {5; 3}.

Câu 90. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 0.

B. 1.

C. +∞.

D. 2.

x2 −3x+8

Câu 91. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 6.
B. 8.
C. 7.
D. 5.

1 − 2n
Câu 92. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. 1.
D. .
3
3
3
√3
Câu 93. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
D. .
A. 3.
B. −3.
C. − .
3
3
Câu 94. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.


B. Câu (II) sai.

C. Câu (I) sai.

D. Khơng có câu nào
sai.
d = 300 .
Câu 95. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
B. V = 6a .
C. V =
.
D. V =
.
A. V = 3a 3.
2
2
Trang 7/11 Mã đề 1


Câu 96. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.

B. −6.
C. 5.
x+1
Câu 97. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. 3.
B. .
C. .
3
4
2

D. −5.

D. 1.

Câu 98. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.

B. 9.

C. 7.

Câu 99. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.

B. 2.
C. 1.

D. 0.
D. 5.

Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
120.(1, 12)3
100.1, 03
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1

3
Câu 101. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 4.
D. 0, 5.
q
2
Câu 102. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 103. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Khơng thay đổi.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Câu 104. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
Câu 105. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23

1637
1728
1079
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 106. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
23
9
A. − .
B.
.
C. −
.
D.
.
16
100

100
25
Câu 107. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.
Câu 108. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Trang 8/11 Mã đề 1


a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.
D. 4.

Câu 109. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.

B. 2.

Câu 110. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai

quyển sách cùng một môn nằm cạnh nhau là
2
1
9
1
A. .
B.
.
C.
.
D. .
5
10
10
5
Câu 111. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




2a 3
a 3
a 3
B.
.
C.
.
D.
.

A. a 3.
2
2
3
Câu 112. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có hai.
D. Có một.
un
Câu 113. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. 1.
C. −∞.
D. +∞.

Câu 114. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.

B.
.
C.
.
D.
.
A.
6
6
18
36
√3
4
Câu 115. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
1
Câu 116. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.
Z 3

x
a
a
Câu 117. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
Câu 118. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e

D. m =


1 + 2e
.
4e + 2

Câu 119. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
S .ABCD là

3
3
3
2a
4a
4a 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 120. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.

B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 121. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình tam giác.
D. Hình lăng trụ.
!
!
!
1
2
2016
4x
Câu 122. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 1008.
D. T = 2017.
2017

Trang 9/11 Mã đề 1


Câu 123. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
C. .
A. 1.
B.
2
2
Câu 124. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
C. un =
.
n
2
2
(n + 1)
n
5n + n2


D. 2.

D. un =

n2 − 2
.
5n − 3n2

Câu 125. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 16 m.
D. 12 m.
Câu 126. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
Câu 127. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.
C. 3.
!2x−1
!2−x
3
3

Câu 128. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).

D. 1.

D. [3; +∞).

Câu 129. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là
5
8
7
; 0; 0 .
; 0; 0 .
; 0; 0 .
A.
B.
C.
D. (2; 0; 0).
3
3
3
d = 120◦ .

Câu 130. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 2a.
C. 3a.
D.
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
3.

2. A
4.

B

5.

6.


C

7. A
9.

C

11. A
13.

B
C

15.
19.

8.

B

10.

B

12.

B

14.


B

B

18.

B

20.

B

21.

D

22.

23.

D

24.

25. A
27.

D
B


26. A
28. A

B

29. A

30. A

31.
33.

C

16. A
D

17.

B

D

32.

B

34.


B

C

35. A

36.

38. A

39.

40. A

41.

B
B

42.

B

43.

44.

B

45. A


46.

D

47.

C

48.

D

49.

50.

D

51. A

52.

B

D
B

53.


C

D

54. A

55.

C

56. A

57.

C

58.

59.

D

60. A

D

61. A

62.


D

63.

64.

D

65.

C

67.

C

66. A
68.

D

69.
1

B

D


70.


71.

B
D

72.
C

74.

C

73.

D

75.

D

76.

D

77. A

78.

D


79.

B

81.

B

83.

B

85.

B

80.

C

82. A
84.

D

87.

D


88. A

89.

D

90. A

91.

86.

92.

B

C

93.

B

D

94.

D

95.


C

96.

D

97.

C

98.

99.

B

100. A

101.

B

102. A

103.

104.

B


B

106.
108.

107.

B

B

109.

C

111.

C

112. A

D

113. A
C

114.
116.

C


105.
C

110.

D

115.

B

B

117.

118. A

119.

120.

C

121.

122.

C


123.

124.

C

125.

C
B
C
D
C

126.

B

127.

B

128.

B

129.

B


130.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×