Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (645)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.33 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .


C. (− 2)0 .

D.


−1.

−3

Câu 2. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
Câu 3.
A. 2.
Câu 4.
A. 1.


C. D = (0; +∞).
D. D = R \ {1}.
!
1
1
1
[3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
D. .
B. +∞.
C. .
2
2
x−3 x−2
x−3
x−2
[3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
B. Vô nghiệm.
C. 2.
D. 3.

Câu 5. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a

a 3
A. .
B. .
C. a.
D.
.
3
2
2
Câu 6. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
Câu 7. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. 2
A. √
.
a + b2
a2 + b2

a2 + b2
2 a2 + b2
Câu 8. √
Thể tích của tứ diện đều cạnh
√ bằng a


a3 2
a3 2
a3 2
a3 2
.
B.
.
C.
.
D.
.
A.
6
2
4
12
x2 − 12x + 35
Câu 9. Tính lim
x→5
25 − 5x
2
2
A. −∞.

B. − .
C. +∞.
D. .
5
5
Câu 10. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 11. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 12. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
C. D = R.
2

D. D = R \ {1; 2}.
Trang 1/11 Mã đề 1



Câu 13. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 27.
C. 9.
D. 3 3.
Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 6
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
48
16
24
Câu 15. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC

A. V = 3.
B. V = 4.
C. V = 5.
D. V = 6.
Câu 16. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
x+1
Câu 17. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. 3.
C. 1.
D. .
A. .
4
3
x+2
Câu 18. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?

A. 2.
B. Vơ số.
C. 1.
D. 3.
Câu 19. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
3

Câu 20. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e3 .
C. e5 .

D. e.

Câu 21. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

D. 4.

C. 8.

Câu 22. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).

1
1
C. lim = 0.
D. lim k = 0.
n
n
Câu 23. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
A.
C. 5.
D. 34.
17
Câu 24. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 3}.
D. {3; 4}.
Câu 25. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6

B.
.
C. 2a 6.
D. a 6.
A. a 3.
2
Câu 26. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
Trang 2/11 Mã đề 1


Câu 27. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n

sin n
.
n

C.


1
D. √ .
n




x = 1 + 3t




Câu 28. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t

















A. 
B. 
.
C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .
















z = 1 − 5t

z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
Câu 29. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

A. 5.
B. 5.
C. 25.


D.

1
.
5

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 4.
D. 1.

Câu 30. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 2.

B. 7.

Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).

Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
8a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:

=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
!2x−1
!2−x
3
3
Câu 33. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.

C. 1.
D. Vô số.

Câu 34. [4] Xét hàm số f (t) =

Câu 35. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.



4n2 + 1 − n + 2

Câu 36. Tính lim
bằng
2n − 3
A. 1.
B. 2.

C.

3
.
2

D. +∞.
Trang 3/11 Mã đề 1


8
Câu 37. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
2n2 − 1
Câu 38. Tính lim 6
3n + n4
2
A. 2.
B. 0.
C. 1.

D. .
3
Câu 39. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
D. (−∞; 6, 5).
Câu 40. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 10 năm.
D. 7 năm.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 41. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 42. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. − .

D. 2.
2
2
[ = 60◦ , S O
Câu 43. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
17
19
19
Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.

B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.
d = 120◦ .
Câu 45. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C. 2a.
D.
.
2
Câu 46. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
A. f 0 (0) = 1.
B. f 0 (0) = 10.
C. f 0 (0) = ln 10.
D. f 0 (0) =
ln 10
Câu 47.
các khẳng định sau, khẳng định nào sai?

Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 48. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Ba cạnh.
Trang 4/11 Mã đề 1


2

Câu 49. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B.
.
C. 3 .
A. √ .
3
2e

e
2 e
7n2 − 2n3 + 1
Câu 50. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
C. 0.
3
3
Câu 51. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e
1 − n2
Câu 52. [1] Tính lim 2
bằng?
2n + 1
1

1
B. − .
C. 0.
A. .
3
2
4x + 1
Câu 53. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.
B. −4.
C. 4.

D.

1
.
e2

D. 1.

D. m =

D.

1 + 2e
.
4 − 2e


1
.
2

D. 2.

Câu 54. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 55. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m

√ của hàm số. Khi đó tổng
B. 8 2.
C. 16.
D. 8 3.
A. 7 3.
1
Câu 56. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
π

Câu 57. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
tan x + m
Câu 58. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
x2 − 5x + 6
x→2
x−2
B. 0.

Câu 59. Tính giới hạn lim
A. 5.

C. −1.


D. 1.

Câu 60. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (III).
Trang 5/11 Mã đề 1


Câu 61. Tính lim

x→+∞

A. 2.

x−2
x+3

2
C. − .
3


B. −3.

D. 1.

Câu 62. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
a3
a3
4a 3
.

B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 65. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

C. 4.

D. 1.


Câu 66. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.

B. 6.

C. −1.
!4x

3
2

Câu 67. Tập các số x thỏa mãn
#
" 3
! 2
2
2
A. −∞; .
B. − ; +∞ .
5
3

Z

6

3


3x + 1

. Tính

1

f (x)dx.
0

D. 4.

!2−x

#
2
C. −∞; .
3

"

!
2
D.
; +∞ .
5

ln2 x
m
Câu 68. [3] Biết rằng giá trị lớn nhất của hàm số y =

trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 24.
D. S = 32.
Câu 69. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Câu 70. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a3 3
a3 2
a 3
A.
.
B.
.
C.
.

D.
.
6
4
12
12
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 10a3 .
C. 20a3 .
D. 40a3 .
3
Trang 6/11 Mã đề 1


Câu 72. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 73. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 2, 4, 8.

A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
1 − xy
Câu 74. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
18 11 − 29
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3

Câu 75. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. 3.
B. − .

C. −3.
D. .
3
3
1
Câu 76. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 3.
C. 2.
D. 1.
Câu 77. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 64cm3 .
C. 27cm3 .
D. 46cm3 .

Câu 78. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. [3; 4).
D. (1; 2).
2

2
Câu 79. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24
q

2
Câu 80. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [−1; 0].
Câu 81. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 6.

C. 12.

D. 8.

Câu 82. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 83. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 36.
C. 6.
D. 108.
Câu 84. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).


!
1
B. Hàm số đồng biến trên khoảng ; 1 .
3
Trang 7/11 Mã đề 1


!
1
C. Hàm số nghịch biến trên khoảng −∞; .
3

!
1
D. Hàm số nghịch biến trên khoảng ; 1 .
3

2x + 1
x+1
1
A. −1.
B. .
C. 1.
2
Câu 86. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 1.
C. 2.
Câu 85. Tính giới hạn lim


x→+∞

D. 2.

D. 3.
! x3 −3mx2 +m
1
Câu 87. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m = 0.
Câu 88. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 89. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.
Câu 90. Hàm số nào sau đây khơng có cực trị
1
B. y = x4 − 2x + 1.
C. y = x3 − 3x.
A. y = x + .

x
log2 240 log2 15

+ log2 1 bằng
Câu 91. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.

D. m ≥ 0.
D. y =

x−2
.
2x + 1

D. −8.

Câu 92. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 93. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
Câu 94. Giá trị của lim (3x2 − 2x + 1)

x→1
A. +∞.
B. 2.

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

C. 3.

D. 1.


Câu 95. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =

.
D. V =
.
6
6
2
3
Câu 96. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
!
5 − 12x
Câu 97. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Trang 8/11 Mã đề 1


3
2
Câu 98. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2



B. −3 + 4 2.
C. 3 + 4 2.
D. 3 − 4 2.
A. −3 − 4 2.
log 2x
Câu 99. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1
1 − 2 ln 2x
1 − 4 ln 2x
0
0
0
A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.

x3
2x3 ln 10
x3 ln 10
2x3 ln 10
Câu 100. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3

Câu 101.
Trong các khẳng định sau, khẳng định nào sai?Z

Z
1
xα+1
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
A.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

Câu 102. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
!
x+1
Câu 103. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x

4035
2017
2016
.
B.
.
C. 2017.
D.
.
A.
2017
2018
2018
Câu 104. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 105. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .

4
4
4
4
d = 60◦ . Đường chéo
Câu 106. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
0 0 0 0

Câu 107. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 108. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
Trang 9/11 Mã đề 1



A. 12 năm.

B. 10 năm.

C. 14 năm.

D. 11 năm.

Câu 109. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
D. 1.
Câu 110. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.
2

D. −5.

Câu 111. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
A. β = a β .
a
!x

1
1−x
Câu 112. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
D. − log3 2.
1
Câu 113. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 114. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 115. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 116. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.


C. 3.

D. 2.

Câu 117. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [−1; 2).
C. (1; 2).
D. [1; 2].
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 118. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 119. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = −2.
D. m = 0.
Câu 120. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .

B. − < m < 0.
C. m ≤ 0.
D. m ≥ 0.
4
4
Câu 121. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 122.! Dãy số nào sau đây có !giới hạn là 0?
n
n
5
1
A. − .
B.
.
3
3

!n
5
C.
.
3

!n
4

D.
.
e

Câu 123. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.

C. 20.

D. 30.

Câu 124. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.

D. 2.
Trang 10/11 Mã đề 1


Câu 125. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).

D. (−∞; 1).

Câu 126. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là

9
1
1
2
B.
.
C.
.
D. .
A. .
5
10
10
5
x−3 x−2
x−3
x−2
Câu 127. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.

2
Câu 128.
√ Xác định phần ảo của số phức z = ( 2 + 3i)

A. 6 2.
B. −7.
C. −6 2.

D. 7.
Câu 129. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
d = 300 .
Câu 130. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.


3

a3 3
3a
3
.
B. V = 6a3 .
C. V = 3a3 3.
.
A. V =
D. V =
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3. A

4.
C

5.

6. A
8.

7. A
9.

D

12.
D

13.

16.


B

18. A

19. A

20.
B

22.

23. A
D
B

30.

31.

C

32.

33.

D

34.


35.

D

36. A

B

39. A

C

B

C
B
C
B

38.

B

40.

B

42.

B


43.

D

44.

45.

D

46.

D
C

48.

47. A
49.

D

51. A

B

52.

B


C

54.

55.

C

56.

57.

C

58. A

59.

C

60. A
D

D

50.

53.


61.

B

28.
C

41.

C

26. A

29.

37.

D

24.

25.
27.

C

14. A

17. A
21.


D

10. A

11. A
15.

C

C
B

62. A

63. A

65. A

66.

D

67.

68.

D

69.

1

B
D


70.

71.

C

72. A

73.

74.

D

75.

76.

D

77.

78.


B

80.
82.

D

C
B
D
C

79.

B

81.

B

83. A

B

84.

D

85.


D
D

86.

B

87.

88.

B

89. A

90.

D

91.

D

92.

B

93.

D


94.

B

95.

D

98.

97.

C

96.

99.

B

100.

C

101.

102.

B


103.

104.

B

105.

106.

D

107.

108.

D

109.

110.

D

111. A

112.
B


120. A

121.
B

124. A
B

B
C
B

2

D
C

125.

C

129.
D

C

123.
127.

128. A

130.

D

117. A
119.

126.

B

115. A

118. A
122.

C

113. A

C

114. A
116.

B

B
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×